|本期目录/Table of Contents|

[1]李 敬,王利东*. 不完备信息系统中的广义多粒度双相对定量决策粗糙集[J].南京大学学报(自然科学),2017,53(4):782.[doi:10.13232/j.cnki.jnju.2017.04.022]
 Li Jing,Wang Lidong*. Generalized multigranulation double-relative-quantitative decision-theoretic rough sets in incomplete information system[J].Journal of Nanjing University(Natural Sciences),2017,53(4):782.[doi:10.13232/j.cnki.jnju.2017.04.022]
点击复制

 不完备信息系统中的广义多粒度双相对定量决策粗糙集()
     

《南京大学学报(自然科学)》[ISSN:0469-5097/CN:32-1169/N]

卷:
53
期数:
2017年第4期
页码:
782
栏目:
出版日期:
2017-08-03

文章信息/Info

Title:
 Generalized multigranulation double-relative-quantitative decision-theoretic rough sets in incomplete information system
作者:
 李 敬王利东*
 大连海事大学数学系,大连,116026
Author(s):
 Li JingWang Lidong*
 Department of Mathematics,Dalian Maritime University,Dalian,116026,China
关键词:
 不完备信息系统广义多粒度决策粗糙集双相对定量
Keywords:
 incomplete information systemgeneralized multigranulationdecision-theoretic rough setsdouble-relative-quantitative
分类号:
TP181
DOI:
10.13232/j.cnki.jnju.2017.04.022
文献标志码:
A
摘要:
 经典的粗糙集理论建立在等价关系基础上,要求过于严格,所以限制了它的实际应用范围.为此,扩展形式的粗糙集模型得到了广泛关注,并已成为研究热点.在现实世界中,由于数据测量的误差、对数据的理解或获取的限制等众多原因,所遇到的信息系统往往是不完备的.面向不完备信息系统,在广义多粒度粗糙集以及双相对定量决策粗糙集的基础上定义了两种广义多粒度双相对定量决策粗糙集(GMDrq-DTRS).一方面,讨论GMDrq-DTRS与广义多粒度粗糙集之间的等价关系,以及它们正负域的大小关系;另一方面,在不同的参数关系下,讨论GMDrq-DTRS的正域、负域以及上下边界域所具有的特殊关系.并用具体实例来解释说明 GMDrq-DTRS决策过程和所讨论的GMDrq-DTRS与其他模型之间的关系.
Abstract:
 The classical rough set model is established on the base of an equivalence relation,and its requirement is too strict.In real life,the application of classical rough set theory has certain limitation.It is important for the development of rough set model by introducing other binary relations,which have become hot topics.In the real world,information acquisition systems suffer from the data measurement error,the understanding of the data and the limits of data acquisition,and information systems are usually incomplete.In order to address the relative and absolute information of the incomplete information system,this paper develops two generalized multigranulation double-relative-quantitative decision-theoretic rough sets(GMDrq-DTRS)by combing generalized multigranulation decision-rough sets(GM-DTRS)and double-relative-quantitative decision rough sets(Drq-DTRS).On the one hand,the equivalent relations between two GMDrq-DTRS and GM-DTRS and the relationship of size between their positive region and negative region are explored.On the other hand,the special relations between the positive region,negative region and boundary region of the first generalized multigranulation double-relative-quantitative decision-theoretic rough sets(GMDrq1-DTRS)and the second generalized multigranulation double-relative-quantitative decision-theoretic rough sets(GMDrq2-DTRS)are discussed under the influence of different parameters’ relations.Finally,an illustrative example is employed to illustrate the decision process of GMDrq-DTRS established in the paper and show the relationships between GMDrq-DTRS and other rough set models by taking different parameters.

参考文献/References:

 [1] Pawlak Z.Rough sets.International Journal of Computer & Information Sciences,1982,11(5):341-356.
[2] Greco S,Matarazzo B,Slowinski R.Rough approximation of a preference relation by dominance relations.European Journal of Operational Research,1999,117(1):63-83.
[3] Yao Y Y.Perspectives of granular computing.In:Proceedings of the 2005 IEEE International Conference on Granular Computing.Beijing,China:IEEE,2005:85-90.
[4] Yao Y Y,Lin T Y.Graded rough set approximations based on nested neighborhood systems.In:Proceedings of 5th European Congress on Intelligent Techniques and Soft Computing.Aachen,Germany:European Congress on Intelligent Techniques and Soft Computing,1997,1:196-200.
[5] Wong S K M,Ziarko W.Comparison of the probabilistic approximate classification and the fuzzy set model.Fuzzy Sets and Systems,1987,21(3):357-362.
[6] Yao Y Y,Wong S K M,Lingras P.A decision-theoretic rough set model.In:Proceedings the 5th International Symposium on Methodologies for Intelligent Systems.Knoxville,TN,USA:North-Holland,1990,5:17-25.
[7] Yang X B,Song X N,Chen Z H,et al.On multigranulation rough sets in incomplete information system.International Journal of Machine Learning and Cybernetics,2012,3(3):223-232.
[8] Fang B W,Hu B Q.Probabilistic graded rough set and double relative quantitative decision-theoretic rough set.International Journal of Approximate Reasoning,2016,74:1-12.
[9] Xu W H,Guo Y T.Generalized multigranulation double-quantitative decision-theoretic rough set.Knowledge-Based Systems,2016,105:190-205.
[10] 钱宇华.复杂数据的粒化机理与数据建模.博士学位论文.太原:山西大学,2011.(Qian Y H.Granulation mechanism and data modeling for complex data.Ph.D.Dissertation.Taiyuan:Shanxi University,2011.)
[11] Kryszkiewicz M.Rough set approach to incomplete information systems.Information Sciences,1998,112(1-4):39-49.
[12] Qian Y H,Zhang H,Sang Y L,et al.Multigranulation decision-theoretic rough sets.International Journal of Approximate Reasoning,2014,55(1):225-237.
[13] Yao Y Y.Probabilistic approaches to rough sets.Expert Systems,2003,20(5):287-297.
[14] Xu W H,Zhang X T,Wang Q R.A generalized multi-granulation rough set approach.In:Huang D S,Gan Y,Premaratne P,et al.Bio-Inspired Computing and Applications.ICIC 2011.Lecture Notes in Computer Science.Springer Berlin Heidelberg,2012,6840:681-689.
[15] 孙文鑫,卓春英,王国栋等.序信息系统的一般多粒度粗糙集.计算机科学与探索,2015,9(3):376-384.(Sun W X,Zhuo C Y,Wang G D,et al.Generalized multi-granulation rough set in ordered information system.Journal of Frontiers of Computer Science and Technology,2015,9(3):376-384.)
[16] Yu J H,Xu W H.Multigranulation with different grades rough set in ordered information system.In:Proceedings of 2015 the 12th International Conference on Fuzzy Systems and Knowledge Discovery.Zhangjiajie,China:IEEE,2015:903-908.
[17] 徐伟华.序信息系统与粗糙集.北京:科学出版社,2013,8.(Xu W H.Ordered information system and rough sets.Beijing:Science Press Co.Ltd,2013,8.)

相似文献/References:

备注/Memo

备注/Memo:
 基金项目:国家自然科学基金(61203283),辽宁省自然科学基金(2014025004),中央高校基本科研基金(3132016306,3132017048)
收稿日期:2017-06-22
*通讯联系人,E-mail:ldwang@hotmail.com
更新日期/Last Update: 2017-08-03