|本期目录/Table of Contents|

[1]张雪艾,陆建军*,宗美荣,等. 河南南泥湖矽卡岩型钼矿石地表风化产物初探[J].南京大学学报(自然科学),2017,53(5):849.[doi:10.13232/j.cnki.jnju.2017.05.004]
 Zhang Xueai,Lu Jianjun*,Zong Meirong,et al. Preliminary study on secondary minerals in supergene weathered skarn-type molybdenum ore in Nannihu district,Henan Province[J].Journal of Nanjing University(Natural Sciences),2017,53(5):849.[doi:10.13232/j.cnki.jnju.2017.05.004]
点击复制

 河南南泥湖矽卡岩型钼矿石地表风化产物初探()
     

《南京大学学报(自然科学)》[ISSN:0469-5097/CN:32-1169/N]

卷:
53
期数:
2017年第5期
页码:
849
栏目:
出版日期:
2017-09-30

文章信息/Info

Title:
 Preliminary study on secondary minerals in supergene weathered skarn-type molybdenum ore in Nannihu district,Henan Province
作者:
 张雪艾陆建军*宗美荣向婉丽李 娟陆现彩*
 南京大学地球科学与工程学院内生金属矿床成矿机制研究国家重点实验室,南京,210023
Author(s):
 Zhang XueaiLu Jianjun*Zong MeirongXiang WanliLi JuanLu Xiancai*
 State Key laboratory of Mineral Deposits Research,School of Earth Science and Engineering,Nanjing University,Nanjing,210023,China
关键词:
 钼矿石风化次生矿物钼钙矿铁氧化物
Keywords:
 molybdenite weatheringsecondary mineralpowelliteiron oxide
分类号:
TP181
DOI:
10.13232/j.cnki.jnju.2017.05.004
文献标志码:
A
摘要:
 钼尾矿风化过程中钼元素释放会带来严重的环境污染问题,为了探究钼矿石在地表风化过程中含钼次生矿物形成对于钼元素在表生环境中迁移的影响,对南泥湖矽卡岩型钼矿石风化样品进行了系统的矿物学研究,探讨了次生矿物的形成机制以及钼矿石风化过程中Mo的赋存和迁移形式,进而评估其对环境的影响.矿石中的原生矿物主要为辉钼矿、黄铁矿、石英、方解石,检测到的次生矿物主要为钼钙矿、赤铁矿、针铁矿、石膏.辉钼矿在风化过程中表面破碎、层面卷曲,在辉钼矿与不同矿物接触界面,辉钼矿氧化形成的次生矿物有明显差异.辉钼矿与方解石接触处主要生成石膏和钼钙矿,钼钙矿呈半自形晶形,大小为2 μm,方解石溶解消耗辉钼矿氧化生成的H+,提高了局部的pH并且产生Ca2+,促进钼钙矿和石膏沉淀;在辉钼矿与黄铁矿接触处,主要生成赤铁矿、针铁矿,见少量钼钙矿,铁氧化物吸附重金属元素Mo.在pH为中性的环境中,含有辉钼矿、方解石、黄铁矿的钼矿石风化产物序列以钼钙矿-铁氧化物-石膏为主,Mo会被固定在钼钙矿中或者吸附在铁氧化物表面,从而减轻Mo释放带来的环境污染.
Abstract:
 The release of molybdenum through the weathering of molybdenum ore imposes severe risks of heavy metal contamination.By using many spectrometric methods and SEM observation,the surface changes of skarn-type molybdenum ore sampled from the Nannihu distict and the secondary minerals formed during weathering have been investigated.The migration and valance change of molybdenum in supergene environments has been revealed.The primary minerals in molybdenum ore are dominantly molybdenite,calcite,pyrite,quartz and chlorite.Powellite,gypsum,goethite and hematite have been formed in the weathering process as secondary minerals.During the oxidation process,molybdenite breaks and curles.There exist different secondary mineral assemblages on the interfaces between molybdenite and other minerals.Powellite and gypsum mainly form on the molybdenite-calcite interface,powellite has a subhedral crystal and its size is about 1-2 μm.Iron oxide is the main secondary mineral formed on the interface of molybdenite and pyrite,and it adsorbs molybdenum slightly.No ferrimolybdite formed in the two cases.In neutural environment,molybdenum is fixed in powellite or adsorbed onto iron-oxide,thus reducing the effect of the releasing element Mo to the environment.

参考文献/References:

 [1] Das A K,Chakraborty R,Cervera M L,et al.A review on molybdenum determination in solid geological samples.Talanta,2007,71(3):987-1000. 
[2] 邱 浩,王欣然.二硫化钼的电子输运与器件.南京大学学报(自然科学),2014,50(3):280-293.(Qiu H,Wang X R.Electron transport in MoS2 and its applications in devices.Journal of Nanjing University(Natural Sciences),2014,50(3):280-293.)
[3] Gardner C B,Lyons W B,Litt G,et al.Rock-derived micronutrient transport in the tropics:Molybdenum cycling in deeply-weathered Panama soils.Procedia Earth and Planetary Science,2014,10:266-270.
[4] Gustafsson J P.Modelling molybdate and tungstate adsorption to ferrihydrite.Chemical Geology,2003,200(1-2):105-115.
[5] Pyrzynska K.Determination of molybdenum in environmental samples.Analytica Chimica Acta,2007,590(1):40-48.
[6] Crusius J,Calvert S,Pedersen T,et al.Rhenium and molybdenum enrichments in sediments as indicators of oxic,suboxic and sulfidic conditions of deposition.Earth and Planetary Science Letters,1996,145(1-4):65-78.
[7] Golden J,McMillan M,Downs R T,et al.Rhenium variations in molybdenite(MoS2):Evidence for progressive subsurface oxidation.Earth and Planetary Science Letters,2013,366:1-5.
[8] King E K,Thompson A,Chadwick O A,et al.Molybdenum sources and isotopic composition during early stages of pedogenesis along a basaltic climate transect.Chemical Geology,2016,445:54-67.
[9] Vorlicek T P,Kahn M D,Kasuya Y,et al.Capture of molybdenum in pyrite-forming sediments:role of ligand-induced reduction by polysulfides.Geochimica et Cosmochimica Acta,2004,68(3):547-556.
[10] Dellien I,Hall F M,Hepler L G.Chromium,molybdenum,and tungsten:Thermodynamic properties,chemical equilibriums,and standard potentials.Chemical Reviews,1976,76(3):283-310. 
[11] 于常武,周立岱,陈国伟.钼污染物的产生及在环境中的迁移.化工环保,2008,28(5):413-417.(Yu C W,Zhou L D,Chen G W.Generation of molybdenum pollutant and its transportation in environment.Environmental Protection of Chemical Industry,2008,28(5):413-417.)
[12] Cook S J.Distribution and dispersion of molybdenum in lake sediments adjacent to porphyry molybdenum mineralization,central British Columbia.Journal of Geochemical Exploration,2000,71(1):13-50.
[13] Phelan P J,Mattigod S V.Adsorption of molybdate anion(MoO2-4)by sodium-saturated kaolinite.Clays and Clay Minerals,1984,32(1):45-48.
[14] 周 玮,季峻峰,William B等.利用漫反射光谱鉴定红粘土中针铁矿和赤铁矿.高校地质学报,2007,13(4):730-736.(Zhou W,Ji J F,William B,et al.Determination of goethite and hematite in red clay by diffuse reflectance spectroscopy.Geological Journal of China Universities,2007,13(4):730-736.)
[15] Arimoto R,Balsam W,Schloesslin C.Visible spectroscopy of aerosol particles collected on filters:iron-oxide minerals.Atmospheric Environment,2002,36(1):89-96.
[16] Li F,Chen X Y,Zhang W J,et al.Conversion of molybdenite by a mineral phase reconstruction method and leaching kinetics of its product.International Journal of Refractory Metals and Hard Materials,2017,62:14-20.
[17] LeAnderson P J,Schrader E L,Brake S,et al.Behavior of molybdenum during weathering of the Ceresco Ridge porphyry molybdenite deposit,Climax,Colorado and a comparison with the Hollister deposit,North Carolina.Applied Geochemistry,1987,2(4):399-415.
[18] Ryzhenko B N.Technology of groundwater quality prediction:1.Eh-pH diagram and detention coefficient of molybdenum and tungsten in aqueous solutions.Geochemistry International,2010,48(4):407-414.
[19] Osseo-Asare K.Solution chemistry of tungsten leaching systems.Metallurgical Transactions B,1982,13(4):555-564.
[20] 赵中伟,刘大学.使用氧逸度-pH图对辉钼矿浸出过程的热力学分析.中国钼业,2009,33(1):18-21.(Zhao Z W,Liu D X.Thermodynamic analysis on the leaching process of molybdenites with oxyegen fugacity-pH diagram.China Molybdenum Industry,2009,33(1):18-21.)
[21] 李希明,柯家骏.硫化钼矿浸取过程热力学分析.化工冶金,1982(4):89-95.(Li X M,Ke J J.The thermodynamic analysis on the leaching process of molybdenite.The Chinese Journal of Process Engineering,1982(4):89-95.)
[22] Essington M E,Huntington G S.Formation of calcium and magnesium molybdate complexes in dilute aqueous solutions and evaluation of powellite solubility in spent oil shale.Technical Report.WRI·90-R018 Laramie,Western Research Institute,1990.
[23] Majzlan J,Navrotsky A,Schwertmann U.Thermodynamics of iron oxides:Part Ⅲ.Enthalpies of formation and stability of ferrihydrite(~Fe(OH)3),schwertmannite(~FeO(OH)3/4(SO4)1/8),and ε-Fe2O3.Geochimica et Cosmochimica Acta,2004,68(5):1049-1059.
[24] Navrotsky A,Mazeina L,Majzlan J.Size-driven structural and thermodynamic complexity in iron oxides.Science,2008,319(5870):1635-1638.
[25] Fowler T A,Holmes P R,Crundwell F K.Mechanism of pyrite dissolution in the presence of Thiobacillus ferrooxidans.Applied and Environ-mental Microbiology,1999,65(7):2987-2993.
[26] Salomons W.Environmental impact of metals derived from mining activities:Processes,predictions,prevention.Journal of Geochemical Exploration,1995,52(1-2):5-23.
[27] 李 娟,陆建军,陆现彩等.铜陵狮子山铜金矿废矿石的矿物组成及其环境意义.南京大学学报(自然科学),2013,49(6):689-697.(Li J,Lu J J,Lu X C,et al.Mineral assemblage of sulfide-bearing waste ores and its environmental implication in Dongguashan Cu-Au Mine,Tongling,Anhui Province.Journal of Nanjing University(Natural Sciences),2013,49(6):689-697.)
[28] King P L,McSween H Y Jr.Effects of H2O,pH,and oxidation state on the stability of Fe minerals on Mars.Journal of Geophysical Research,2005,110(E12):E12S10.
[29] Balsam W,Ji J F,Chen J.Climatic interpretation of the Luochuan and Lingtai loess sections,China,based on changing iron oxide mineralogy and magnetic susceptibility.Earth and Planetary Science Letters,2004,223(3-4):335-348.
[30] Jones L H P.The solubility of molybdenum in simplified systems and aqueous soil suspensions.European Journal of Soil Science,1957,8(2):313-327.
[31] Reisenauer H M,Tabikh A A,Stout P R.Molybdenum reactions with soils and the hydrous oxides of iron,aluminum,and titanium.Soil Science Society of America Journal,1962,26(1):23-27.
[32] Vera M,Schippers A,Sand W.Progress in bioleaching:fundamentals and mechanisms of bacterial metal sulfide oxidation—part A.Applied Microbiology and Biotechnology,2013,97(17):7529-7541.
[33] Xia W T,Zhao Z W,Li H G.Thermodynamic analysis on sodium carbonate decomposition of calcium molybdenum.Transactions of Nonferrous Metals Society of China,2007,17(3):622-625.
[34] Furbish W J.Ferrimolybdite and some associated secondary mineral species.Rocks & Minerals,1966,41(6):405-408.
[35] Hermann K,Witko M,Michalak A.Density functional studies of the electronic structure and adsorption at molybdenum oxide surfaces.Catalysis Today,1999,50(3-4):567-577.
[36] McKenzie R M.The adsorption of molybdenum on oxide surfaces.Australian Journal of Soil Research,1983,21(4):505-513.
[37] Amrhein C,Mosher P A,Brown A D.The effects of redox on Mo,U,B,V,and As solubility in evaporation pond soils.Soil Science,1993,155(4):249-255.

相似文献/References:

备注/Memo

备注/Memo:
 基金项目:国家重点基础研究发展计划(973计划)(2014CB846004),国家自然科学基金(41425009)
收稿日期:2017-05-26
*通讯联系人,E-mail:lujj@nju.edu.cnxcljun@nju.edu.cn
更新日期/Last Update: 2017-09-25