|本期目录/Table of Contents|

[1]朱天一,卢 晶*.基于双耳时间差的客观指标对Ambisonics回放系统的性能分析[J].南京大学学报(自然科学),2017,53(6):1153.[doi:10.13232/j.cnki.jnju.2017.06.017]
 Zhu Tianyi,Lu Jing*.Evaluation of Ambisonics reproduction system with object metric based on interaural time difference[J].Journal of Nanjing University(Natural Sciences),2017,53(6):1153.[doi:10.13232/j.cnki.jnju.2017.06.017]
点击复制

基于双耳时间差的客观指标对Ambisonics回放系统的性能分析()
     

《南京大学学报(自然科学)》[ISSN:0469-5097/CN:32-1169/N]

卷:
53
期数:
2017年第6期
页码:
1153
栏目:
出版日期:
2017-12-01

文章信息/Info

Title:
Evaluation of Ambisonics reproduction system with object metric based on interaural time difference
作者:
朱天一卢 晶*
南京大学声学研究所,近代声学教育部重点实验室,南京,210093
Author(s):
Zhu TianyiLu Jing*
Institute of Acoustics,Nanjing University,Key Laboratory of Modern Acoustics Ministry of Education,Nanjing,210093,China
关键词:
Ambisonics系统双耳时间差人头散射声场回放
Keywords:
ambisonics systeminteraural time difference(ITD)head diffractionsound field reproduction
分类号:
TP181
DOI:
10.13232/j.cnki.jnju.2017.06.017
文献标志码:
A
摘要:
在基于扬声器阵列的声回放技术中,相比于波场合成(Wave field synthesis,WFS)和矢量基幅度平移技术,以球谐分解为理论基础的Ambisonics回放系统拥有编解码相互独立以及可扩展等优势.基本的Ambisonics系统通过采集和回放一阶声场方位信息:全指向性(W)和双指向性(X,Y,Z)成分,即所谓的B-format重构声场.HOA(Higher order Ambisonics)基于声场球谐函数分解将B-format以更高空间分辨率进行了扩展.已有很多学者关注HOA的回放精度和使用限制,但综合考虑人头散射效应和人耳听觉特性效应的研究还十分缺乏.从低频人耳定位的重要因素——双耳时间差(Interaural time difference,ITD)的角度评价了不同阶数Ambisonis系统的最佳听音区域.将水平面各方向入射平面波编码为HOA分量,在此基础上计算了模拟人头(刚性球)在环形阵列内部移动时二维水平面的ITD波动,并通过ITD阈值确定最佳听音区域边界.仿真结果表明基于ITD的客观评价指标可以较好地体现不同阶数Ambisonics系统的声场回放性能:4阶Ambisoics系统能够使最佳听音区域达到20 cm×14 cm,而1,2阶系统在中心区域尚不能实现精确回放.因此,高阶Ambisoics系统拥有更好的声源定位性能.
Abstract:
Ambisonics has an advantage over the wave field synthesis(WFS)and vector base amplitude panning(VBAP)techniques in scalability and independence between the encoding and decoding procedure.Ambionics renders 3D sound field from the knowledge of their 1st order directive information omnidirective(W) and bidirective(X,Y,Z) components known as the B-format.Higher-order Ambisonics extends B-format to higher spatial resolution by spherical harmonic decomposition of the sound field.Many scholars have investigated the accuracy and limitation of the HOA(High order Ambisonics) though few of them have taken into account the diffraction of the human head and the features of the auditory system.In this paper,the sweet-zone size of Ambisonics systems with different order is evaluated from the aspect of the interaural time difference(ITD),which is the dominant localization cue for human auditory system in low frequency domain.Firstly,plane waves in the horizontal plane with different incident directions are encoded into independent HOA components.Then the values of reproduced ITD are calculated with a simulated head(a rigid sphere)moving inside the circular loudspeaker array in the horizontal plane.Finally,the edge of sweet-zone is determined when the deviation of ITD exceeds the perception thresholds of ITD according to the psycho-acoustics theory.Results show that the object metric based on ITD matches well with the reproduction performance of high-order Ambisonics systems.Ambisonics system of order 4 generates a sweet-zone of about 20 cm×14 cm while the 1st or 2nd order systems can hardly yield accurate ITD even in the center of the zone.The range of sweet-zone increases markedly with higher order Ambionics system which means HOA has better robustness when human head is located away from the center of the listening zone.As a result,higher order Ambisonics systems are expected to have a better performance in spatial localization of virtual sound image.

参考文献/References:

 [1] Pulkki V.Virtual sound source positioning using vector base amplitude panning.Journal of the Audio Engineering Society,1997,45(6):456-466.
[2] Pulkki V.Uniform spreading of amplitude panned virtual sources.In:1999 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics.New Paltz,NY,USA:IEEE,1999:187-190.
[3] Pulkki V.Spatial sound generation and perception by amplitude panning techniques.Technical Report.Laboratory of Acoustics and Audio Signal Processing,Helsinki University of Technology,2001.
[4] Berkhout A J,de Vries D,Vogel P.Acoustic control by wave field synthesis.The Journal of the Acoustical Society of America,1993,93(5):2764-2778.
[5] de Vries D,Boone M M.Wave field synthesis and analysis using array technology.In:1999 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics.New Paltz,NY,USA:IEEE,1999:15-18.
[6] Hulsebos E,de Vries D,Bourdillat E.Improved microphone array configurations for auralization of sound fields by wave-field synthesis.Journal of the Audio Engineering Society,2002,50(10):779-790.
[7] Poletti M A.Three-dimensional surround sound systems based on spherical harmonics.Journal of the Audio Engineering Society,2005,53(11):1004-1025.
[8] Gerzon M A.Periphony:With-height sound reproduction.Journal of the Audio Engineering Society,1973,21(1):2-10.
[9] Gerzon M A.The design of precisely coincident microphone arrays for stereo and surround sound.In:Proceedings of the 50th Audio Engineering Society Convention.London,UK:Audio Engineering Society,1975:1-20.
[10] Choi H,Toy R.Omnitone:Spatial audio on the web.http://itgrep.com/project/44158.html,2016-07-27.
[11] Ward D B,Abhayapala T D.Reproduction of a plane-wave sound field using an array of loudspeakers.IEEE Transactions on Speech and Audio Processing,2001,9(6):697-707.
[12] Moreau S,Daniel J,Bertet S.3D sound field recording with higher order ambisonics-objective measurements and validation of spherical microphone.In:Proceedings of the 120th Audio Engineering Society Convention.Paris,France:Audio Engineering Society,2006:1-24.
[13] Oreinos C,Buchholz J M.Objective analysis of ambisonics for hearing aid applications:Effect of listener’s head,room reverberation,and directional microphones.The Journal of the Acoustical Society of America,2015,137(6):3447-3465.
[14] Zheng J W,Zhu T Y,Lu J,et al.A linear robust binaural sound reproduction system with optimal source distribution strategy.Journal of the Audio Engineering Society,2015,63(9):725-735.
[15] Takeuchi T,Nelson P A,Hamada H.Robustness to head misalignment of virtual sound imaging systems.The Journal of the Acoustical Society of America,2001,109(3):958-971.
[16] Epain N,Guillon P,Kan A,et al.Objective evaluation of a three-dimensional sound field reproduction system.In:Proceedings of the 20th International Congress on Acoustics.Sydney,Australia:ICA,2010:1-7.
[17] 龚惠哲.基于矢量合成法的Ambisonic多通路声系统解码原理.电声技术,2009,33(11):72-76,80.(Gong H Z.Decode theory of vectorial combination based on Ambisonic system.Audio Engineering,2009,33(11):72-76,80.)
[18] 张志飞,卢 晶,邹海山.传声器阵列近场波束算法鲁棒性研究.南京大学学报(自然科学),2014,50(1):46-53.(Zhang Z F,Lu J,Zou H S.Research on the robust near-field beamformers.Journal of Nanjing University(Natural Sciences),2014,50(1):46-53.)
[19] Gerzon M A.General metatheory of auditory localization.In:Proceedings of the 92nd Audio Engineering Society Convention.Vienna,Austria:Audio Engineering Society,1992:1-63.
[20] Daniel J.Spatial sound encoding including near field effect:Introducing distance coding filters and a viable,new ambisonic format.In:Proceedings of the 23rd International Conference of Audio Engineering Society.Helsinger,Denmark:Audio Engineering Society,2003:1-16.
[21] Rafaely B.Fundamentals of spherical array processing.Springer Berlin Heidelberg,2015,16-20.
[22] Plessas P.Rigid sphere microphone arrays for spatial recording and holography.Master Dissertation.Graz:Graz University of Technology,2009.
[23] Rafaely B.Analysis and design of spherical microphone arrays.IEEE Transactions on Speech and Audio Processing,2005,13(1):135-143.
[24] Daniel J,Rault J B,Polack J D.Acoustic properties and perceptive implications of stereophonic phenomena.In:Proceedings of the 16th International Conference of Audio Engineering Society.Arktikum,Finland:Audio Engineering Society,1999:1-8.
[25] Cooper D H.Problems with shadowless stereo theory:Asymptotic spectral status.Journal of the Audio Engineering Society,1987,35(9):629-642.
[26] Minnaar P,Plogsties J,Olesen S K,et al.The interaural time difference in binaural synthesis.In:Proceedings of the 108th Audio Engineering Society Convention.Paris,France:Audio Engineering Society,2000:1-20.
[27] Katz B F G,Noisternig M.A comparative study of interaural time delay estimation methods.The Journal of the Acoustical Society of America,2014,135(6):3530-3540.
[28] Klumpp R G,Eady H R.Some measurements of interaural time difference thresholds.The Journal of the Acoustical Society of America,1956,28(5):859-860.
[29] Moore B C J.An introduction to the psychology of hearing.The 6th Edition.Leiden:Brill,2012,40-44.
[30] Van Hoesel R J M,Tyler R S.Speech perception,localization,and lateralization with bilateral cochlear implants.The Journal of the Acoustical Society of America,2003,113(3):1617-1630.

相似文献/References:

备注/Memo

备注/Memo:
基金项目:国家自然科学基金(11374156,11474163)
收稿日期:2017-05-02
*通讯联系人,E-mail:lujing@nju.edu.cn
更新日期/Last Update: 2017-11-28