|本期目录/Table of Contents|

[1]黄艳艳,于忠卫*,吉正源,等. 各向异性异质材料中的Goos-Hnchen位移研究[J].南京大学学报(自然科学),2017,53(4):708.[doi:10.13232/j.cnki.jnju.2017.04.013]
 Huang Yanyan,Yu Zhongwei*,Ji Zhengyuan,et al. The Goos-Hnchen shift on the surface of anisotropic metamaterials[J].Journal of Nanjing University(Natural Sciences),2017,53(4):708.[doi:10.13232/j.cnki.jnju.2017.04.013]
点击复制

 各向异性异质材料中的Goos-Hnchen位移研究()
     

《南京大学学报(自然科学)》[ISSN:0469-5097/CN:32-1169/N]

卷:
53
期数:
2017年第4期
页码:
708
栏目:
出版日期:
2017-08-03

文章信息/Info

Title:
 The Goos-Hnchen shift on the surface of anisotropic metamaterials
作者:
 黄艳艳于忠卫*吉正源钱盈家
 南通大学理学院,南通,226019
Author(s):
 Huang YanyanYu Zhongwei*Ji ZhengyuanQian Yingjia
 School of Science,Nantong University,Nantong,226019,China
关键词:
 负折射率准左手化材料古斯-汉森位移各向异性
Keywords:
negative refractive indexquasi-left-handed materialGoos-Hnchen shiftanisotropy
分类号:
O441.4
DOI:
10.13232/j.cnki.jnju.2017.04.013
文献标志码:
A
摘要:
 对单轴各向异性材料中的负折射进行了讨论,并对具有负折射率的准左手介质(NI-QLHM)表面的古斯-汉森位移进行了详细的理论研究,给出了横电(TE)波和横磁(TM)波入射时的古斯-汉森位移d和穿透深度dz的表达式.对TE入射波的情况进行了数值模拟,结果显示,在μz<0的情况下,频率ω分布在4~6 GHz之间时,各向异性材料为NI-QLHM.而磁导率分量|μz|越小,在NI-QLHM频率区域越容易实现全反射;随着频率的增加,临界角减小,从而发生全反射的入射角的范围增加,同时也将导致准左手化材料的有效折射率减小.结果还显示,对于同一个入射角,随着频率ω的增加,古斯-汉森位移减小,即随着折射率n的减小,古斯-汉森位移减小.而穿透深度dz与古斯-汉森位移d相对应,穿透深度越大,古斯-汉森位移也越大.
Abstract:
 In this paper,we constructed a dissipative uniaxial anisotropic metamaterial,in which the components of the permittivity and the permeability tensor were varying with the frequency.Then,the effective negative refractive index of the uniaxial anisotropic metamaterial,and the Goos-Hnchen(GH)shift on the surface of anisotropic quasi-left-handed meterial was studied in detail.The expressions of GH shift and penetration depth were given for transverse electric(TE)and transverse magnetic(TM)incident wave.The numerical simulation of the TE incident wave shows that the anisotropic metamaterial can be the quasi-left-handed material with negative refractive index(NI-QLHM)as the frequency is between 4 GHz and 6 GHz for μz<0(i.e.,the relative permeability of the uniaxial material parallel to the optical axial is negative).Moreover,the smaller of the permeability component |μz|,the easier to realize the total reflection in the frequency region of the NI-QLHM.And with increasing the frequency,the critical angle decreases,thus the region of incident angle corresponding to the total reflection increases,which leads to the decrease of the effective refractive index of the NI-QLHM.In what follows,we investigated the GH shifts and the penetration depth of the NI-QLHM.The penetration depth corresponds with the GH shifts,generally,the larger the penetration depth is,the greater the GH shifts are.Meanwhile,the GH shifts of the NI-QLHM are always negative,which is contrary to the ordinary material and is the unique physical property of the NI-QLHM.In the end,the influences of the frequency and the incident angle on the GH shifts and the penetration depth were discussed.The numerical results show that with increasing the frequency,the GH shifts decrease for the same of the incident angle,which means that with decreasing the refractive index,the GH shifts also decrease.It can be concluded that the negative GH shifts can be adjusted by changing the frequency and the angle of incidence

参考文献/References:

 [1] Veselago V G.The electrodynamics of substances with simultaneously negative values of ε and μ.Soviet Physics Uspekhi,1968,10(4):509-514.
[2] Shelby R A,Smith D R,Schultz S.Experimental verification of a negative index of refraction.Science,2001,292(5514):77-79.
[3] Smith D R,Pendry J B,Wiltshire M C K.Metamaterials and negative refractive index.Science,2004,305(5685):788-792.
[4] Liu Y H,Zhou X,Song K,et al.Quasi-phase-matching of the dual-band nonlinear left-handed metamaterial.Applied Physics Letters,2014,105(20):201911.
[5] Kaina N,Lemoult F,Fink M,et al.Negative refractive index and acoustic superlens from multiple scattering in single negative metamaterials.Nature,2015,525(7567):77-81.
[6] Lan S F,Kang L,Schoen D T,et al.Backward phase-matching for nonlinear optical generation in negative-index materials.Nature Materials,2015,14(8):807-811.
[7] Kuramochi E,Taniyama H,Tanabe T,et al.Ultrahigh-Q one-dimensional photonic crystal nanocavities with modulated mode-gap barriers on SiO2 claddings and on air claddings.Optics Express,2010,18(15):15859-15869.
[8] Gan L,Liu Y Z,Li J Y,et al.Ray trace visualization of negative refraction of light in two-dimensional air-bridged silicon photonic crystal slabs at 1.55 μm.Optics Express,2009,17(12):9962-9970.
[9] 李志远,甘 霖.二维硅基平板光子晶体器件.光学学报,2011,31(9):0900119.(Li Z Y,Gan L.Two-dimensional silicon photonic crystal slab devices.Acta optica sinica,2011,31(9):0900119.)
[10] Goos F,Hnchen H.Ein neuer und fundamentaler versuch zur totalreflexion.Annalen der Physik,1947,436(7-8):333-346.
[11] Berman P R.Goos-Hnchen shift in negatively refractive media.Physical Review E,2002,66(6):067603.
[12] Lakhtakia A.On planewave remittances and Goos-Hnchen shifts of planar slabs with negative real permittivity and permeability.Electromagnetics,2003,23(1):71-75.
[13] Shadrivov I V,Zharov A A,Kivshar Y S.Giant Goos-Hnchen effect at the reflection from left-handed metamaterials.Applied Physics Letters,2003,83(13):2713-2715.
[14] Kong J A,Wu B I,Zhang Y.Lateral displacement of a Gaussian beam reflected from a grounded slab with negative permittivity and permeability.Applied Physics Letters,2002,80(12):2084-2086. 
[15] Chen X,Li C F.Lateral shift of the transmitted light beam through a left-handed slab.Physical Review E,2004,69(6):066617.
[16] 王政平,王 成,张振辉等.单轴各向异性左手材料的电磁特性.哈尔滨工程大学学报,2008,29(4):432-436.(Wang Z P,Wang C,Zhang Z H,et al.Electromagnetic characteristics of uniaxially anisotropic left-handed material.Journal of Harbin Engineering University,2008,29(4):432-436.)
[17] Huang Y Y,Gao L.Effective negative refraction in anisotropic layered composites.Journal of Applied Physics,2009,105(1):013532.
[18] 姜永远,张永强,时红艳等.单轴各向异性左手介质表面的Goos-Hnchen位移.物理学报,2007,56(2):798-804.(Jiang Y Y,Zhang Y Q,Shi H Y,et al.The Goos-Hnchen shift on the surface of uniaxially anisotropic left-handed materials.Acta Physica Sinica,2007,56(2):798-804.)
[19] Tang T T,He X J,Ma W Y,et al.Tunable lateral shift in a prism-waveguide system with biaxially anisotropic metamaterial.Optik,2014,125(21):6441-6444. 
[20] Tang T T,He X J,Liu W L.Large lateral shift in a multi-layer waveguide with indefinite media.Optik,2014,125(21):6459-6461.

相似文献/References:

备注/Memo

备注/Memo:
 基金项目:国家自然科学基金(11604163,11447229),江苏省大学生创新创业训练计划(201610304006Z)
收稿日期:2016-12-19
*通讯联系人,E-mail:yu.zw@ntu.edu.cn
更新日期/Last Update: 2017-08-02