|本期目录/Table of Contents|

[1]李禾澍,王 栋*,王远坤.基于信息熵的多目标水文站网优化探讨[J].南京大学学报(自然科学),2017,53(2):326.[doi:10.13232/j.cnki.jnju.2017.02.014]
 Li Heshu,Wang Dong*,Wang Yuankun.Entropy based multi?objective optimization for hydrologic networks[J].Journal of Nanjing University(Natural Sciences),2017,53(2):326.[doi:10.13232/j.cnki.jnju.2017.02.014]
点击复制

基于信息熵的多目标水文站网优化探讨()
     

《南京大学学报(自然科学)》[ISSN:0469-5097/CN:32-1169/N]

卷:
53
期数:
2017年第2期
页码:
326
栏目:
出版日期:
2017-04-01

文章信息/Info

Title:
Entropy based multi?objective optimization for hydrologic networks
作者:
李禾澍王 栋*王远坤
南京大学地球科学与工程学院,南京,210023
Author(s):
Li HeshuWang Dong*Wang Yuankun
School of Earth Sciences and Engineering,Nanjing University,Nanjing,210023,China
关键词:
联合熵互信息Nash?Sutcliffe效率系数多目标站网优化
Keywords:
joint entropymutual informationNash?Sutcliffe Efficiency Coefficient(NSC)multi?objectivenetwork optimization
分类号:
TV11
DOI:
10.13232/j.cnki.jnju.2017.02.014
文献标志码:
A
摘要:
规划合理的水文站网能够充分反映水文时空变异特征.站网优化力求以最少的站点数目收集尽可能准确详尽的信息.建立了一种基于信息熵的多目标水文站网优化模型,基于信息熵原理,以站点间互信息最小为原则对站点进行排序,形成站点组合多种方案;构建由联合熵百分比、平均互信息和Nash?Sutcliffe效率系数(NSC)组成的评价函数对站点组合进行信息承载量评价;运用多目标优化求解方法求得最优解.对黄河支流伊洛河流域多年月流量序列进行了实例分析,结果表明:伊洛河流域水文站网可去除冗余站点;优化后的站网仍可提供足量信息.所建立水文站网优化模型综合考虑了站网的信息总量、信息重叠量和数据波动三项指标,并结合多目标优化方法求解,满足了对站网信息量作定量分析的需要以及在多目标下进行站网优化的要求,是一种合理有效的站网优化方法,对于水资源的规划管理具有重要作用.
Abstract:
A well?designed hydrologic network can reflect the spatial?temporal variability of hydrologic variables adequately at catchment scale and reveal the hydrologic regularities systematically and precisely.Hydrologic network optimization requires a minimum number of sites to gather abundant and accurate information.In this study,an entropy based multi?objective optimization model for hydrologic networks was established.Firstly,based on the information entropy theory,the sites were sorted under the principle of the minimum mutual information.Then different number of sites composed several combinations of sites.Secondly,in order to evaluate the information carrying capacity of these combinations,an objective function composed of joint entropy percentage,average mutual information and Nash?Sutcliffe Efficiency Coefficient(NSC)was constructed,which is the core of the network optimization model.Finally,based on the multi?objective decision?making method,a Pareto solution set was determined and an optimum solution was chosen through the ideal point method.Taking the monthly runoff data of the Yiluo River—a tributary of the Yellow River—as a sample,the paper analyzed the hydrologic network of the Yiluo River Basin.Results showed that the network of the Yiluo River can be optimized.After removing some redundant sites,the new hydrologic network still provides sufficient information,meanwhile the cost of network construction and maintenance is reduced.As a result,the network’s utility is maximized.The model proposed in this study takes 3 targets into account and integrates the multi?objective optimization method.The targets include the total information,the overlapped information and the residual of the data.This model meets the requirement of quantitative analysis of information as well as getting a network optimization solution under multiple targets.The model is proved effective and rational and will play an important role in water resources management and policy?making.

参考文献/References:

[1] 张继国,刘新仁.降水时空分布不均匀性的信息熵分析——(Ⅰ)基本概念与数据分析.(Ⅱ)模型评价与应用.水科学进展,2000,11(2):133-137.(Zhang J G,Liu X R.Information entropy analysis on nonuniformity of precipitation distribution in time?space:Ⅰ.Basic concept and data analysis.Ⅱ.Model evaluation and application.Advances in Waterence.2000,11(2):133-143.) [2] Krstanovic P F,Singh V P.Evaluation of rainfall networks using entropy:Ⅰ.Theoretical development.Ⅱ.Application.Water Resources Management,1992,6(4):279-293. [3] Ozkul S,Harmancioglu N B,Singh V P.Entropy?based assessment of water quality monitoring networks.Journal of Hydrologic Engineering,2000,5(1):90-100. [4] Singh V P.Review of hydrology for engineers,geologists,and environmental professionals by Sergio E.Serrano.Journal of Hydrologic Engineering,2011,16(10):846-846. [5] 陈 颖,袁艳斌,袁晓辉.基于信息熵的水文站网优化研究.水电能源科学,2013,31(7):188-190.(Chen Y,Yuan Y B,Yuan X H.Hydrologic network optimization based on information entropy.Water Resources and Power,2013,31(7):188-190.) [6] Chen Y C,Wei C,Yeh H C.Rainfall network design using kriging and entropy.Hydrological Processes,2008,22(3):340-346. [7] Li C,Singh V P,Mishra A K.Entropy theory?based criterion for hydrometric network evaluation and design:Maximum information minimum redundancy.Water Resources Research,2012,48(48):311-314. [8] Su H T,You J Y.Developing an entropy?based model of spatial information estimation and its application in the design of precipitation gauge networks.Journal of Hydrology,2014,519:3316-3327. [9] Mogheir Y,Lima J L M P D,Singh V P.Entropy and multi?objective based approach for groundwater quality monitoring network assessment and redesign.Water Resources Management,2009,23(8):1603-1620. [10] Chebbi A,Bargaoui Z K,Cunha M D C.Optimal extension of rain gauge monitoring network for rainfall intensity and erosivity index interpolation.Journal of Hydrologic Engineering,2011,16(8):665-676. [11] Samuel J,Coulibaly P,Kollat J.CRDEMO:Combined regionalization and dual entropy?multiobjective optimization for hydrometric network design.Water Resources Research,2013,49(12):8070-8089. [12] Uddameri V,Andruss T.A GIS?based multi?criteria decision?making approach for establishing a regional?scale groundwater monitoring.Environmental Earth Sciences,2014,71(6):2617-2628. [13] Leach J M,Kornelsen K C,Samuel J,et al.Hydrometric network design using streamflow signatures and indicators of hydrologic alteration.Journal of Hydrology,2015,529:1350-1359. [14] Xu H,Xu C Y,Slthun N R,et al.Entropy theory based multi?criteria resampling of rain gauge networks for hydrological modelling - A case study of humid area in southern China.Journal of Hydrology,2015,525(A):138-151. [15] Thomas M C,Joy A T.信息论基础.阮吉寿,张华译.北京:机械工业出版社,2008,7-13. [16] Yeh H C,Chen Y C,Wei C,et al.Entropy and kriging approach to rainfall network design.Paddy and Water Environment,2011,9(3):343-355.

相似文献/References:

备注/Memo

备注/Memo:
基金项目:国家自然科学基金(41571017) 收稿日期:2016-12-12 *通讯联系人,E-mail:wangdong@nju.edu.cn
更新日期/Last Update: 2017-03-26