|本期目录/Table of Contents|

[1]程鲁腾,杨 楠,杨华山,等.面向GPON的硅基锗探测器应用研究[J].南京大学学报(自然科学),2016,52(6):1104.[doi:10.13232/j.cnki.jnju.2016.06.014]
 Cheng Luteng,Yang Nan,Yang Huashan,et al.Research on the application of germanium detectors in GPON[J].Journal of Nanjing University(Natural Sciences),2016,52(6):1104.[doi:10.13232/j.cnki.jnju.2016.06.014]
点击复制

面向GPON的硅基锗探测器应用研究
()
     

《南京大学学报(自然科学)》[ISSN:0469-5097/CN:32-1169/N]

卷:
52
期数:
2016年第6期
页码:
1104
栏目:
出版日期:
2016-12-01

文章信息/Info

Title:
Research on the application of germanium detectors in GPON
作者:
 程鲁腾14杨 楠14杨华山14刘光祖2陈相宁34*张洪国14*江 伟14*
1.南京大学现代工程与应用科学学院,南京,210093;2.南京理工大学电子工程与光电技术学院,南京,210094;
3.南京大学电子科学与工程学院,南京,210093;4.南京微结构国家实验室(筹),南京,210093
Author(s):
 Cheng Luteng14Yang Nan14Yang Huashan14Liu Guangzu2Chen Xiangning34*Zhang Hongguo14*Jiang Wei14*
1.College of Engineering and Applied Sciences,Nanjing University,Nanjing,210093,China;
2.School of Electronic and Optical Engineering,Nanjing University of Science and Technology,
Nanjing,210094,China;
3.College of Electronic Science and Engineering,Nanjing University,Nanjing,210093,China;
4.Nanjing National Laboratory of Microstructures,Nanjing 210093,China
关键词:
 硅基光电子学硅基锗探测器GPON2.5 Gbps
Keywords:
 silicon photonicsgermanium detectorGPON2.5 Gbps
分类号:
TN29
DOI:
10.13232/j.cnki.jnju.2016.06.014
文献标志码:
A
摘要:
锗硅探测器由于其在近红外波段有高响应度、高带宽,且与CMOS(Complementary Metal Oxide Semiconductor)工艺兼容等优良的光电特性,已经成为近几年的研究热点之一.为了研究硅基锗APD的商用通信测试指标,结合GPON(Gigabit­capable Passive Optical Networks)接入网的技术指标要求,实验研究了硅基锗探测器的光电变换特性.采用BERT搭建了可靠的硅基锗探测器测试系统,并对探测器进行了性能测试.该设计方案可靠性高,测试数据对实际应用有一定的指导意义.测试眼图表明,该探测器可以在2.5 Gbps速率下可靠检测出2电平调制符号,有在GPON光通信网络中应用的潜力.讨论了进一步降低误码率,实现低误码、高可靠性的数据通信,减小信号因内部逻辑设计而产生的误码的几种方法.其中包括采用可扩展的Aurora光纤传输协议的传输方案、集成直流平衡缓冲器(DC­balancing Buffer)的方法和加入CDR(时钟数据恢复)模块的方法.数据表明,所提出的测试方案是可行的.本试验为硅基锗探测器在GPON上应用提供可行解决方案和技术数据.
Abstract:
In past several decades, silicon photonics technology has been well­developed and applied to optical interconnects, data communications, and sensing. Many key components, such as waveguides, modulators, isolators, detectors and lasers on silicon­on­isolator, have been studied and reached high performance. Silicon­based germanium detectors have become a hot research topic in recent years because of their excellent photoelectric properties, such as high bandwidth, small footprint, and CMOS(Complementary Metal Oxide Semiconductor)compatibility. Recently, they have been widely applied to many optical­electronic devices or communication systems. In this work, silicon­based germanium detectors for GPON(Gigabit­capable Passive Optical Networks)applications have been systematically studied. In order to meet the current requirements of GPON access network standard, the photoelectric conversion characteristics of the silicon­based germanium detectors have been investigated. A simple and practical testing platform utilizing a BERT(bit error rate tester)has been built up to take experimental data and characterize the photoelectric performance of germanium detectors which have important properties in practical optical communication technologies. Eye diagrams have shown that the detector can reliably perform under 2.5 Gbps rate, detecting 2­level modulation symbols, which may be potentially useful in GPON optical communication networks. Several schemes of reducing bit error rate have also been discussed.The CDR(clock and data recovery)has significantly improved the eye diagram and reduced the bit error rate. Other related data or result analysis have also been measured and analyzed in the paper. Data have shown that the proposed testing scheme is feasible. This test provides a possible solution and technical data for the application of silicon based germanium detectors in GPON. Further experimental test and data analysis are in process, and may be reported in the forth­coming publications.

参考文献/References:

[1] 周治平.硅基光电子学.北京:北京大学出版社,2012,1-14.(Zhou Z P.Silicon photonics.Beijing:Beijing University Press,2012,1-14.)
[2]  Li C,Zhang D L,Xue C L,et al.Progress in the study of Si­based group IV optoelectronic devices(II)——Photodetectors.Laser & Optoelectronics Progress,in press,DOI:10.3788LOP/51.110002.
[3]  王兴军,苏昭棠,周治平.硅基光电子学的最新进展.中国科学:物理学力学天文学,2015,45:014201.(Wang X J,Su Z T,Zhou Z P.Recent progress of silicon photonics.Scientia Sinica­Physica Mechanica Astronomica,2015,45:014201.)
[4]  Kang Y M,Liu H D,Morse M,et al.Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain­bandwidth product.Nature Photonics,2009,3(1):59-63.
[5]  Clark W R,Margittai A,Noel J P,et al.Reliable,high gain­bandwidth product in GaAs/InP avalanche photodiodes for 10 Gbs receivers.Optical Fiber Communication,1999,1:96-98.
[6]  Zaoui W S,Chen H W,Bowers J E,et al.Frequency response and bandwidth enhancement in Ge/Si avalanche photodiodes with over 840 GHz gain­bandwidth­product.Optics Express,2009,17:12641-12649.
[7]  Jung H Y,Lee J M,Choi W Y.A high­speed CMOS integrated optical receiver with an under­damped TIA.IEEE Photonics Technology Letters,2015,27(13):1-1.
[8]  Lee M J,Youn J S,Park K Y,et al.A fully­integrated 12.5 Gbps 850 nm CMOS optical receiver based on a spatially­modulated avalanche photodetector.Optics Express,in press,DOI:10.1364/OE.22.002511.
[9]  Kamrani E,Lesage F,Sawan M.Low­noise,high­gain transimpedance amplifier integrated with SiAPD for low­intensity near­infrared light detection.IEEE Sensors Journal,2014,14(1):258-269.
[10]  Cong H,Xue C L,Liu Z,et al.High­speed waveguide­integrated Ge/Si avalanche photodetector.Physical B,in press,DOI:10.1088/1674-1056/25/5/058503.
[11]  Joseph C P,光纤通信.第五版.王江平,刘 杰,闻传花等译.北京:电子工业出版社,2009,188.
[12]  Schinke D P,Smith R G,Hartman A R,et al.Semiconductor devices for optical communication:Photodetectors.New York:Springer­verlag Berlin Heidelberg Publishers,1982,63-87.
[13]  Palais J C.光纤通信:第五版.王江平,刘 杰,闻传花等译.北京:电子工业出版社,2011,186.
[14]  Gigabit­capable Passive Optical Networks(GPON).Physical Media Dependent(PMD)layer specification.ITU-T G.984.2-2003.
[15]  Segarra J,Sales V,Prat J,et al.Planning and designing FTTH networks:Elements,tools andpractical issues.International Conference on Transparent Optical Networks,2012,49(1):1-6.
[16]  Park S,Lee C,Jeong K,et al.Fiber­to­the­home services based on wavelength division­multiplexing passive optical network.Journal of Lightwave Technology,2004,22(11):2582-2591.
[17]  Amitabha B,Youngil P,Frederick C,et al.Wavelength­division­multiplexed passive optical network(WDM­PON)technologies for broadband access:A review.Journal of Optical Communications and Networking,2005,4(11):737-758.
[18]  Harstead E,Sharpe R.Future fiber­to­the­home bandwidth demands favor time division multiplexing passive optical networks.Communications Magazine,2012,50(11):218-223.
[19]  马云峰,许 聪,董 峰等.一种光纤通信数据传输及误码率测试方法.江南大学学报(自然科学版),2014,13(6):656-661.(Ma Y F,Xu C,Dong F,et al.A testing method of data transfer and BER using in optical fiber communications.Journal of Jiangnan University(Natural Science Edition),2014,13(6):656-661.)
[20]  Duan N,Liow T Y,Lim A E J,et al.High speed waveguide­integrated Ge/Si avalanche photode­tector.Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference,2013,25(5):470-473.

相似文献/References:

备注/Memo

备注/Memo:
基金项目:国家青年千人计划
收稿日期:2016-09-29
*通讯联系人,E­mail:shining@nju.edu.cnzhang.hongguo@nju.edu.cnweijiang@nju.edu.cn
更新日期/Last Update: 2016-11-21