|本期目录/Table of Contents|

[1]季 阳,单 丹,钱明庆,等.镶嵌于非晶碳化硅中的高导电性掺杂纳米晶硅的制备与电学性能研究[J].南京大学学报(自然科学版),2016,52(5):780.[doi:10.13232/j.cnki.jnju.2016.05.002]
 Ji Yang,Shan Dan,Qian Mingqing,et al.Formation and electrical properties of high conductively doped nanocrystalline silicon embedded in amorphous silicon carbide[J].Journal of Nanjing University(Natural Sciences),2016,52(5):780.[doi:10.13232/j.cnki.jnju.2016.05.002]
点击复制

镶嵌于非晶碳化硅中的高导电性掺杂纳米晶硅的制备与电学性能研究()
     

《南京大学学报(自然科学版)》[ISSN:0469-5097/CN:32-1169/N]

卷:
52
期数:
2016年第5期
页码:
780
栏目:
出版日期:
2016-10-01

文章信息/Info

Title:
Formation and electrical properties of high conductively doped nanocrystalline silicon embedded in amorphous silicon carbide
文章编号:
201607011
作者:
季 阳单 丹钱明庆李 伟徐 骏*陈坤基
固体微结构物理国家重点实验室,南京大学电子科学与工程学院,南京,210093
Author(s):
Ji YangShan DanQian MingqingLi WeiXu Jun*Chen Kunji
National Laboratory of Solid State Microstructures,School of Electronic Science and Engineering,Nanjing University,Nanjing,210093,China
关键词:
碳硅比纳米晶碳化硅暗电导率电学性质
Keywords:
C/Si rationanocrystallinesilicon carbidedark conductivityelectrical properties
分类号:
O047
DOI:
10.13232/j.cnki.jnju.2016.05.002
文献标志码:
A
摘要:
对不同C/Si比的掺磷非晶碳化硅薄膜的光电性质进行了研究.发现对于原始样品,随着C/Si比的减小,材料的光学带隙逐渐减小,暗电导率逐渐增大.对于1000 ℃退火后的样品,材料的暗电导率有了6到7个数量级的提高.随着膜中C/Si比的减小,材料中Si-C键密度逐渐减少,结晶度提高,光学带隙有所增大,多数载流子迁移率增大,暗电导率逐渐增大.此外,薄膜中组分比的改变对材料中掺杂磷原子的激活效率以及材料的电导率激活能等都会产生相应影响.随着C/Si比的减小,退火后样品的掺杂磷原子的激活效率随之改变,表现为载流子浓度先增大后减小的趋势,这与材料的结晶程度有很大的关系.退火后样品的电导率激活能随着C/Si比的减小而逐渐减小,费米能级逐渐靠近导带底,最后位于导带底甚至进入导带,使材料表现为重掺杂的特性.
Abstract:
The optical and electrical properties of phosphorus doped silicon carbide thin films with various C/Si ratio were studied before and after thermally annealing.It is found that with decreasing the C/Si ratio for as­deposited samples,the optical band gap is gradually decreased and dark conductivity increased accordingly.As high as 6 to 7 orders of magnitude of material dark conductivity improvement is a remarkable result of 1000 ℃ annealing.With decreasing the C/Si ratio for annealed samples,the Si-C bond density is decreased in company with the enhancement of crystal degree and optical band gap,and also with improvements of main carrier mobility as well as dark conductivity.Besides,influences of the C/Si ratio to the phosphorus dopant activation effect and to the material conductivity activation energy are also significant.The dopant activation effect changes in the form of the carrier concentration,which increases firstly and then decreases slightly with reducing the C/Si ratio,representing a close relation to the crystal degree.Furthermore,the conductivity activation energy of annealed samples is reduced with decreasing the C/Si ratio,the Fermi level consequently rises very close to the bottom of the conduction band or even enters into the conduction band,indicating the formation of heavily doped semiconductor materials.

参考文献/References:

[1] Tawada Y,Tsuge K,Kondo M,et al.Properties and structure of a-SiC:H for high­efficiency a-Si solar cell.Journal of Applied Physics,1982,53(7):5273-5281.
[2]  Xu X,Cao Y Q,Lu P,et al.Electroluminescence devices based on Si quantum dots/SiC multilayers embedded in PN junction.IEEE Photonics Journal,2014,6(1):2200207.
[3]  Nikas V,Gallis S,Huang M,et al.The origin of white luminescence from silicon oxycarbide thin films.Applied Physics Letters,2014,104(6):061906.
[4]  Mu W W,Zhang P,Xu J,et al.Direct­current and alternating­current driving Si quantum dots­based light emitting device.IEEE Journal of Selected Topics in Quantum Electronics,2014,20(4):8200106.
[5]  Perani M,Brinkmann N,Hammud A,et al.Nanocrystal formation in silicon oxy­nitride films for photovoltaic applications:optical and electrical properties.The Journal of Physics and Chemistry C,2015,119(24):13907-13914.
[6]  Song C,Rui Y J,Wang Q B,et al.Structural and electronic properties of Si nanocrystals embedded in amorphous SiC matrix.Journal of Alloys and Compounds,2011,509(9):3963-3966.
[7]  Semenov A V,Puzikov V M,Dobrotvorskaya M V,et al.Nanocrystalline SiC films prepared by direct deposition of carbon and silicon ions.Thin Solid Films,2008,516(10):2899-2903.
[8]  Robertson J,The electronic and atomic structure of hydrogenated amorphous Si-C alloys.Philosophical Magazine Part B,1992,66(5):615-638.
[9]  Campbell I H,Fauchet P M,The effects of microcrystal size and shape on the one phonon Raman spectra of crystalline semiconductors.Solid State Communications,1986,58(10):739-741.
[10]  Veprek S,Sarott F A,Iqbal Z.Effect of grain boundaries on the Raman spectra,optical absorption,and elastic light scattering in nanometer­sized crystalline silicon.Physical Review B,1987,36(6):3344-3350.
[11]  Mavi H S,Shukla A K,Abbi S C,et al.Raman study of amorphous to microcrystalline phase transition in cw laser annealed a-Si:H films.Journal of Applied Physics,1989,66(11):5322-5326.
[12]  He Y,Wei Y,Zheng G,et al.An exploratory study of the conduction mechanism of hydrogenated nanocrystalline silicon films.Journal of Applied Physics,1997,82(7):3408-3413.
[13]  Das D,Bhattacharya K.Characterization of the Si:H network during transformation from amorphous to micro­and nanocrystalline structures.Journal of Applied Physics,2006,100(10):103701.
[14]  Martín P,Torres A,Jiménez J,et al.Reversible crystallization of a-Si1-xGexa-Si1-xGex alloys under the combined effect of light and temperature.Journal of Applied Physics,2004,96(1):155-163.
[15]  Tauc J,Grigorovici R,Vancu A.Optical properties and electronic structure of amorphous germanium.Physica Status Solidi,1966,15(2):627-637.
[16]  Seto J Y W.The electrical properties of polycrystalline silicon films.Journal of Applied Physics,1975,46(12):5247-5254.

相似文献/References:

备注/Memo

备注/Memo:
基金项目:国家自然科学基金(11274155),江苏省“333”工程(BRA2015284),江苏省2015年度普通高校研究生实践创新计划(SJLX15_0019)
收稿日期:2016-05-05
*通讯联系人,E­mail:junxu@nju.edu.cn
更新日期/Last Update: 2016-09-24