|本期目录/Table of Contents|

[1]李家梦,杨柳燕,缪爱军*.14C-标记碳点的合成及其在海洋浮游植物体内的生物富集应用研究 [J].南京大学学报(自然科学),2016,52(3):512-519.[doi:10.13232/j.cnki.jnju.2016.03.013]
 Li Jiameng,Yang Liuyan,Miao Aijun*. The synthesis of 14C-­labelled carbon dots and their accumulation in marine phytoplankton [J].Journal of Nanjing University(Natural Sciences),2016,52(3):512-519.[doi:10.13232/j.cnki.jnju.2016.03.013]





 The synthesis of 14C-­labelled carbon dots and their accumulation in marine phytoplankton
 Li JiamengYang LiuyanMiao Aijun*
 State Key Laboratory of Pollution Control and Resource Reuse,School of the Environment, Nanjing University,Nanjing,210023,China
 碳基纳米材料碳 点东海原甲藻海洋原甲藻超声破碎生物富集
 carbon­based nanomaterialscarbon dotsProrocentrum donghaienseProrocentrum micansultrasonicationbioaccumulation
 为了探究光敏性碳基纳米材料的生物富集过程,通过一步微波热解反应合成14C标记的碳点,并以海洋原甲藻(Prorocentrum micans)和东海原甲藻(Prorocentrum donghaiense)作为受试生物,定量分析了这两种生物对碳点(C­dots)的吸收动力学差异.由于生物细胞的遮挡效应可能会影响胞内标记碳点的测定,实验中首先比较了生物样品三种处理方法(对生物样品分别直接测定,超清洗,超声破碎)的效果差异,发现对生物细胞样品进行超声破碎的处理效果最好,并且在超声5 min的条件下测定效果最佳.随后,开展实验进一步探究了短时间内碳点在生物细胞内的富集过程.结果表明,碳点在这两种生物体内的富集量都随时间呈现线性增加的趋势.当我们以三种生物富集量表示方法作图(pg?cell-1,pg?μm-2和pg?μm-3)时,发现采用以单位体积的生物富集量作图最科学,并且发现这两种原甲藻对碳点的生物富集量随时间的变化趋势极为接近,克服了藻细胞大小带来的差异,更为科学地阐述了水生生物体内碳点的富集量的变化.
 To investigate the bioaccumulation of carbon­based nanomaterial,we synthesized the 14C-­labeled carbon dots(C­dots)by one­way microwave pyrolysis.Two marine algae,Prorocentrum micans and Prorocentrum donghaiense were used as the objective organisms,and their accumulation of C­dots was compared.As the 14C signal from the C­dots may be quenched inside the cells,the results of the different ultrasonicating methods were compared,and the counting number was the highest when the cells were ultrasonicated for 5 minutes.After the optimization of the cell processing methods,we further explored the bioaccumulation kinetics of C­dots by both algae and the accumulation results with different units(pg?cell-1,pg?μm-2,and pg?μm-3)were compared.As expected,cellular concentration of C­dots increased linearly with exposure time regardless of the units of the accumulation results.Nevertheless,when the accumulation results were expressed in the unit of pg?μm-3,potential accumulation difference between the two algae disappeared and this unit would be used in the bioaccumulation studies of C­dots in the future.


[1] Navarro E,Baun A,Behra R,et al.Environmental behavior and ecotoxicity of engineered nanoparticles to algae,plants,and fungi.Ecotoxicology,2008,17(5):372-386.
[2] Gwinn M R,Vallyathan V.Nanoparticles:Health effects­pros and cons.Environmental Health Perspectives,2006,1818-1825.
[3] Wang Y,Miao A J,Luo J,et al.Bioaccumulation of CdTe quantum dots in a freshwater alga Ochromonas danica:A kinetics study.Environmental Science & Technology,2013,47(18):10601-10610.
[4] Li J,Strong R,Trevisan J,et al.Dose­related alterations of carbon nanoparticles in mammalian cells detected using biospectroscopy:Potential for real­world effects.Environmental Science & Technology,2013,47(17):10005-10011.
[5] Liu Q,Guo B,Rao Z,et al.Strong two­photon­induced fluorescence from photostable,biocompatible nitrogen­doped graphene quantum dots for cellular and deep­tissue imaging.Nano Letters,2013,13(6):2436-2441.
[6] Shen R,Song K,Liu H,et al.Fluorescence enhancement and radiolysis of carbon dots through aqueous γ radiation chemistry.The Journal of Physical Chemistry C,2012,116(29):15826-15832.
[7] Czarny B,Georgin D,Berthon F,et al.Carbon nanotube translocation to distant organs after pulmonary exposure:Insights from in situ 14C­radiolabeling and tissue radioimaging.ACS Nano,2014,8(6):5715-5724.
[8] Guo X,Dong S,Petersen E J,et al.Biological uptake and depuration of radio­labeled graphene by Daphnia magna.Environmental Science & Technology,2013,47(21):12524-12531.
[9] Li D,Fortner J D,Johnson D R,et al.Bioaccumulation of 14C60 by the earthworm Eisenia fetida.Environmental Science & Technology,2010,44(23):9170-9175.
[10] Petersen E J,Huang Q,Weber W J.Relevance of octanol­water distribution measurements to the potential ecological uptake of multi­walled carbon nanotubes.Environmental Toxicology and Chemistry,2010,29(5):1106-1112.
[11] Zhu H,Wang X,Li Y,et al.Microwave synthesis of fluorescent carbon nanoparticles with electrochemiluminescence properties.Chemical Communications,2009(34):5118-5120.
[12] Domingos R F,Baalousha M A,Ju­Nam Y,et al.Characterizing manufactured nanoparticles in the environment:multimethod determination of particle sizes.Environmental Science & Technology,2009,43(19):7277-7284.
[13] Guillard R R L.Culture of phytoplankton for feeding marine invertebrates.Culture of marine invertebrate animals.Springer US,1975:29-60.
[14] Guillard R R L,Ryther J H.Studies of marine planktonic diatoms:I.Cyclotella nana Hustedt,and Detonula confervacea(Cleve)Gran.Canadian Journal of Microbiology,1962,8(2):229-239.
[15] Baker S N,Baker G A.Luminescent carbon nanodots:Emergent nanolights.Angewandte Chemie International Edition,2010,49(38):6726-6744.
[16] Zhang B,Liu C,Liu Y.A Novel One­step approach to synthesize fluorescent carbon nanoparticles.European Journal of Inorganic Chemistry,2010,2010(28):4411-4414.
[17] Zhang J,Shen W,Pan D,et al.Controlled synthesis of green and blue luminescent carbon nanoparticles with high yields by the carbonization of sucrose.New Journal of Chemistry,2010,34(4):591-593.
[18] Glibert P M,Burkholder J A M,Kana T M,et al.Grazing by Karenia brevis on Synechococcus enhances its growth rate and may help to sustain blooms.Aquatic Microbial Ecology,2009,55(1):17-30.
[19] Jeong H J,Du Yoo Y,Kim J S,et al.Growth,feeding and ecological roles of the mixotrophic and heterotrophic dinoflagellates in marine planktonic food webs.Ocean Science Journal,2010,45(2):65-91.
[20] 张淑雯,欧林坚,吕颂辉等.光照及营养盐对3种赤潮甲藻吞噬营养行为的影响.海洋科学,2011,35(4):94-99.(Zhang S W,Ou L J,Lü S H,et al.Effects of light and nutrients on the phagotrophic behaviors of three harmful dinoflagellates.Marine Science,2011,35(4):94-99.)
[21] Du Yoo Y,Jeong H J,Kim M S,et al.Feeding by Phototrophic red­tide dinoflagellates on the ubiquitous marine diatom Skeletonema costatum.Journal of Eukaryotic Microbiology,2009,56(5):413-420.
[22] 张清春,于仁成,宋静静等.几株赤潮甲藻的摄食能力.生态学报,2012,32(2):402-413.(Zhang Q C,Yu R C,Song J J,et al.Ingestion of selected HAB­forming dinoflagellates.Acta Ecologica Sinica,2012,32(2):402-413.)
[23] Fan C W,Reinfelder J R.Phenanthrene accumulation kinetics in marine diatoms.Environmental Science & Technology,2003,37(15):3405-3412.
[24] Tsui M T K,Wang W X.Biokinetics and tolerance development of toxic metals in Daphnia magna.Environmental Toxicology and Chemistry,2007,26(5):1023-1032.
[25] Wang W X,Fisher N S.Delineating metal accumulation pathways for marine invertebrates.Science of the Total Environment,1999,237:459-472.
[26] Miao A J,Wang W X,Juneau P.Comparison of Cd,Cu,and Zn toxic effects on four marine phytoplankton by pulse­amplitude­modulated fluorometry.Environmental Toxicology and Chemistry,2005,24(10):2603-2611.
[27] Chang E,Thekkek N,Yu W W,et al.Evaluation of quantum dot cytotoxicity based on intracellular uptake.Small,2006,2(12):1412-1417.
[28] Allen M J,Tung V C,Kaner R B.Honeycomb carbon:A review of graphene.Chemical Reviews,2009,110(1):132-145.
[29] Zanni E,De Bellis G,Bracciale M P,et al.Graphite nanoplatelets and Caenorhabditis elegans:Insights from an in vivo model.Nano Letters,2012,12(6):2740-2744.
[30] Zhang Y,Ali S F,Dervishi E,et al.Cytotoxicity effects of graphene and single­wall carbon nanotubes in neural phaeochromocytoma­derived PC12 cells.ACS Nano,2010,4(6):3181-3186.
[31] 朱小山,朱 琳,田胜艳等.三种碳纳米材料对水生生物的毒性效应.中国环境科学,2008,28(3):269-273.(Zhu X S,Zhu L,Tian S Y,et al.Toxicity effect of three kinds of carbonnano­materials on aquatic organisms.China Environmental Science,2008,28(3):269-273.)



更新日期/Last Update: 2016-07-02