|本期目录/Table of Contents|

[1]崔仙姬,欧阳丹彤,何加亮*,等. 基于关联解释的术语集MUPS求解方法[J].南京大学学报(自然科学),2018,54(1):56.[doi:10.13232/j.cnki.jnju.2018.01.007]
 Cui Xianji*,Ouyang Dantong,He Jialiang,et al. Associate interpretation based MUSP calculation in terminologies[J].Journal of Nanjing University(Natural Sciences),2018,54(1):56.[doi:10.13232/j.cnki.jnju.2018.01.007]
点击复制

 基于关联解释的术语集MUPS求解方法()
     

《南京大学学报(自然科学)》[ISSN:0469-5097/CN:32-1169/N]

卷:
54
期数:
2018年第1期
页码:
56
栏目:
出版日期:
2018-02-01

文章信息/Info

Title:
 Associate interpretation based MUSP calculation in terminologies
作者:
 崔仙姬12欧阳丹彤23何加亮1*高 健4
1.大连民族大学信息与通信工程学院,大连,116600;
2.符号计算与知识工程教育部重点实验室(吉林大学),长春,130012;
3.吉林大学计算机科学与技术学院,长春,130012;
4.大连海事大学信息科学技术学院,大连,116026
Author(s):
 Cui Xianji12*Ouyang Dantong23He Jialiang1Gao Jian4
1.College of Information and Communication Engineering,Dalian Minzu University,Dalian,116600,China;
2.Key Laboratory of Symbol Computation and Knowledge Engineering(Jilin University),Ministry of Education,Changchun,130012,China;
3.College of Computer Science and Technology,Jilin University,Changchun,130012,China;
4.College of Information Science and Technology,Dalian Maritime University,Dalian,116026,China
关键词:
 描述逻辑本体调试极小不可满足保持子术语集关联解释
Keywords:
 description logicsontology debuggingminimal unsatisfiability-preserving sub-TBox(MUPS)associate interpretation
分类号:
TP391
DOI:
10.13232/j.cnki.jnju.2018.01.007
文献标志码:
A
摘要:
 本体调试是人工智能中非标准推理任务之一,主要用于找出本体中导致逻辑冲突的解释并进行修改,对于本体工程具有重要意义.结合语法相关性与关联解释,提出一种术语集的极小不可满足子术语集求解方法.语法相关性用于递归扩展不可满足子术语集,从待测术语集中将与不可满足概念语法相关的公理集合加入到不可满足子术语集,一定程度上减少了不相关公理的加入,可以有效减少待测术语集规模.进一步地,将术语集的极小不可满足保持子术语集(minimal unsatisfiability-preserving sub-TBox,MUPS)的求解过程看作是关键公理的查找过程.提出关联解释的定义,并通过构造术语集的关联解释方式确定关键公理.该过程一定程度上减少了推理机调用次数并简化了每次调用用于找出问题时的推理任务.实验部分将各类优化策略应用于黑盒算法并进行了比较.实验结果表明,该方法能够有效提高术语集MUPS求解效率.
Abstract:
 Ontology debugging is one of the non-standard reasoning tasks in artificial intelligence,which is very important for the ontology engineering.Ontology debugging is mainly used to find out the interpretations which may cause the logical conflicts in ontologies,and further revise the ontologies to eliminate these conflicts.Technically,calculating minimal unsatisfiability-preserving sub-TBox(MUPS)is the core issue in the ontology debugging.The existing work of MUPS calculation investigates two approaches:one based on modifying the internal of a description logic reasoner(the “glass-box” technology),and other based on using an unmodified external reasoner(the “black-box” technology).In our work,one method using syntactic relevance and associate interpretation is proposed to calculate the MUPS for the unsatisfiable classes and terminologies.This method is based on the traditional black-box technology,and further optimizes the expansion and prune procedure in the traditional black-box technology.Firstly,we extend the candidate unsatisfiable sub-TBox by adding the axioms which are structurally relevant with the axioms that contain unsatisfiable classes.By doing this,we can eliminate the irrelevant axioms for the satisfiability to the extent,which may reduce the size of the axioms in terminologies to be checked.Then,the MUPS calculation can be seen as the procedure of seeking the critical axioms in the MUPS.In this procedure,we propose the definition of the associate interpretation,and the associate interpretation is introduced to construct special interpretation which can be used to check the satisfaction of axioms in candidate minimal unsatisfiable sub-TBox.And the number of reasoner call is reduced and further the reasoning problem in each iteration is also simplified.Finally,we realize the algorithm and compare it with the optimizations of the black box algorithm.The experimental results show that the proposed method can effectively improve the efficiency of MUPS calculation in the terminology.

参考文献/References:

 [1] Staab S,Studer R.Handbook on ontologies.Springer Berlin Heidelberg,2009,811.
[2] Doms A,Schroeder M.GoPubMed:Exploring PubMed with the gene ontology.Nucleic Acids Research,2005,33(S2):W783-W786.
[3] Cornet R,De Keizer N.Forty years of SNOMED:A literature review.BMC Medical Informatics and Decision Making,2008,8(S1):S2.
[4] Baader F,Calvanese D,McGuinness D L,et al.The description logic handbook:Theory,implementation,and applications.The 2nd Edition.New York,NY,USA:Cambridge University Press,2007,573.
[5] Kalyanpur A,Parsia B,Sirin E,et al.Debugging unsatisfiable classes in OWL ontologies.Web Semantics:Science,Services and Agents on the World Wide Web,2005,3(4):268-293.
[6] Schlobach S,Cornet R.Non-Standard reasoning services for the debugging of description logic terminologies ∥ Proceedings of the 18th International Joint Conference on Artificial Intelligence.Acapulco,Mexico:Morgan Kaufmann Publishers Inc.,2003:355-362.
[7] Schlobach S,Huang ZS,Cornet R,et al.Debugging incoherent terminologies.Journal of Automated Reasoning,2007,39(3):317-349.
[8] Kalyanpur A,Parsia B,Horridge M,et al.Finding all justifications of OWL DL entailments ∥ The 6th International Semantic Web Conference,2nd Asian Semantic Web Conference.Busan,Korea:Springer,2007:267-280.
[9] Baader F,Pealoza R.Automata-based axiom pinpointing.Journal of Automated Reasoning,2010,45(2):91-129.
[10] Ye Y X,Ouyang D T,Su J.Entailment-based axiom pinpointing in debugging incoherent terminologies ∥ The 1st International Workshop on Semantic Technologies.Changchun,China:CEUR-WS,2015:105-115.
[11] Reiter R.A theory of diagnosis from first principles.Artificial Intelligence,1987,32(1):57-95.
[12] Schlobach S.Diagnosing terminologies ∥ Proceedings of the 20th National Conference on Artificial Intelligence.Pittsburgh,PA,USA:AAAI,2005:670-675.
[13] Friedrich G,Shchekotykhin K.A general diagnosis method for ontologies ∥ The 4th International Semantic Web Conference.Galway,Ireland:Springer,2005:232-246.
[14] Shchekotykhin K,Friedrich G,Fleiss P,et al.Interactive ontology debugging:Two query strategies for efficient fault localization.Web Semantics:Science,Services and Agents on the World Wide Web,2012,12-13:88-103.
[15] Jannach D,Schmitz T,Shchekotykhin K.Parallel model-based diagnosis on multi-core computers.Journal of Artificial Intelligence Research,2016,55(1):835-887.
[16] Parsia B,Sirin E,Kalyanpur A.Debugging OWL ontologies ∥ Proceedings of the 14th International Conference on World Wide Web.Chiba,Japan:ACM,2005:633-640.
[17] Kalyanpur A,Parsia B,Sirin E.Black box techniques for debugging unsatisfiable concepts ∥ Proceedings of the International Workshop on Description Logics.Edinburgh,UK:CEUR-WS,2005:26-28.
[18] Grau B,Horrocks I,Kazakov Y,et al.Just the right amount:Extracting modules from ontolo-gies ∥ The 16th International Conference on World Wide Web.Banff,Canada:ACM,2007:717-726.

相似文献/References:

备注/Memo

备注/Memo:
 基金项目:国家自然科学基金(61672261,61502199,61402070),辽宁省自然科学基金(2015020023),符号计算与知识工程教育部重点实验室开放课题(93K172016k02),大连民族大学自主基金(DC201501060)
收稿日期:2017-12-09
*通讯联系人,E-mail:urchin2012@sina.com
更新日期/Last Update: 2018-01-31