|本期目录/Table of Contents|

[1]朱 尧,朱启海,毛晓蛟,等.基于有监督显著性检测的目标跟踪[J].南京大学学报(自然科学),2017,53(4):747.[doi:10.13232/j.cnki.jnju.2017.04.018]
 Zhu Yao,Zhu Qihai,Mao Xiaojiao,et al.Object tracking based on supervised saliency detection[J].Journal of Nanjing University(Natural Sciences),2017,53(4):747.[doi:10.13232/j.cnki.jnju.2017.04.018]
点击复制

基于有监督显著性检测的目标跟踪()
     

《南京大学学报(自然科学)》[ISSN:0469-5097/CN:32-1169/N]

卷:
53
期数:
2017年第4期
页码:
747
栏目:
出版日期:
2017-08-03

文章信息/Info

Title:
Object tracking based on supervised saliency detection
作者:
朱 尧朱启海毛晓蛟杨育彬*
?南京大学计算机软件新技术国家重点实验室,南京,210023
Author(s):
?Zhu YaoZhu QihaiMao XiaojiaoYang Yubin*
?State Key Laboratory for Novel Software Technology,Nanjing University,Nanjing,210023,China
关键词:
流形排序随机游走超像素目标跟踪
Keywords:
manifold rankingrandom walksuperpixelobject tracking
分类号:
TP391
DOI:
10.13232/j.cnki.jnju.2017.04.018
文献标志码:
A
摘要:
?通过构建基于超像素的图作为视觉表示引入超像素间的空间信息.采用基于图模型的流形排序作为显著性检测方法得到第一阶段每个超像素的显著性,判别式表观模型则通过基于中层特征的分类器进行判别并利用空间信息对分类结果进行调整,将流形排序和分类结果结合作为先验信息选择随机游走种子点.结合随机游走得到的第二阶段的显著值和分类结果,最终得到当前帧的置信图.在置信图的基础上,采用积分图方法快速计算得到候选的观测值,将观测值最大的候选作为跟踪结果.在数据集上的实验结果表明,该方法可以有效处理快速运动和形变等问题,从而实现复杂背景下鲁棒的目标跟踪.
Abstract:
?In this work,we focus on short-term single object tracking,which is the most general type of tracking problems.Numerous significant trackers have been proposed over the past few decades.As we can see from these trackers,the methods that adopt the mid-level representation have shown their superiority over other approaches in dealing with challenging factors like partial occlusion.However,most of their representation model lack the spatial information,which usually leads to poor robustness in object tracking.As a popular middle level representation,superpixels are semantically meaningful and much more homogeneous than randomly selected square patches.In this work,we construct a graph based on superpixels to introduce spatial information.A graph-based saliency detection model,which uses manifold ranking to compute the saliency scores for each superpixel for the first stage,is combined with a discriminative model,which trains a classifier to classify the candidate superpixels as target or non-target.The saliency scores and the classification result adjusted by the spatial information are then used to select the seeds for random walk as prior knowledge,which makes the result of saliency detection more relevant to the target object.Combining the classification result and the saliency scores computed by the second stage random walk,a confidence map is achieved,based on which candidates are fast ranked utilizing integral graph method.The top-ranked candidate is regarded as the target object.In order to evaluate our approach,we compare our results with other trackers along with some analysis.The experimental results on visual tracking benchmark dataset demonstrate that our approach is effective for fast motion,partial occlusion and background clutter in tracking,thus realizes desirable and robust tracking performance under complex conditions.

参考文献/References:

?[1] Martin R,ArandjeloviAc' O.Multiple-object tracking in cluttered and crowded public spaces.In:Proceedings of the 6th International Conference on Advances in Visual Computing.Springer Berlin Heidelberg,2010:89-98.
[2] ArandjeloviAc' O.Contextually learnt detection of unusual motion-based behaviour in crowded public spaces.In:Gelenbe E,Lent R,Sakellari G.Computer and Information Sciences II.Springer Berlin Heidelberg,2011.
[3] Yuan Y,Fang J W,Wang Q.Robust superpixel tracking via depth fusion.IEEE Transactions on Circuits and Systems for Video Technology,2014,24(1):15-26.
[4] Yang F,Lu H C,Yang M H.Robust superpixel tracking.IEEE Transactions on Image Processing,2014,23(4):1639-1651.
[5] Cai Z W,Wen L Y,Lei Z,et al.Robust deformable and occluded object tracking with dynamic graph.IEEE Transactions on Image Processing,2014,23(12):5497-5509.
[6] Wang Y X,Zhao Q J.Superpixel tracking via graph-based semi-supervised SVM and supervised saliency detection.In:Proceedings of 2015 IEEE International Conference on Multimedia and Expo.Turin,Italy:IEEE,2015:1-6.
[7] Babenko B,Yang M H,Belongie S.Visual tracking with online multiple instance learning.In:Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Miami,FL,USA:IEEE,2009:983-990.
[8] Hare S,Golodetz S,Saffari A,et al.Struck:Structured output tracking with kernels.IEEE Transactions on Pattern Analysis and Machine Intelligence,2016,38(10):2096-2109.
[9] Li X,Dick A,Wang H Z,et al.Graph mode-based contextual kernels for robust SVM tracking.In:Proceedings of IEEE International Conference on Computer Vision.Barcelona,Spain:IEEE,2011:1156-1163.
[10] Yang C,Zhang L H,Lu H C,et al.Saliency detection via graph-based manifold ranking.In:Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Portland,OR,USA:IEEE,2013:3166-3173.
[11] Grady L.Random walks for image segmentation.IEEE Transactions on Pattern Analysis and Machine Intelligence,2006,28(11):1768-1783.
[12] Viola P,Jones M.Rapid object detection using a boosted cascade of simple features.In:Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.Kauai,HI,USA:IEEE,2001:I-511-I-518. 
[13] Ren X F,Malik J.Tracking as repeated figure/ground segmentation.In:Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Minneapolis,MN,USA:IEEE,2007.
[14] Adam A,Rivlin E,Shimshoni I.Robust fragments-based tracking using the integral histogram.In:Proceedings of 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.New York,NY,USA:IEEE,2006:798-805.
[15] Li X L,Han Z F,Wang L J,et al.Visual tracking via random walks on graph model.IEEE Transactions on Cybernetics,2016,46(9):2144-2155.
[16] Achanta R,Shaji A,Smith K,et al.SLIC superpixels.In:2015 IEEE International Conference on Multimedia and Expo.Turin,Italy:IEEE,2015:1-6.
[17] Chang C C,Lin C J.LIBSVM:A library for support vector machines.ACM Transactions on Intelligent Systems and Technology,2011,2(3):27.
[18] Li C Y,Yuan Y C,Cai W D,et al.Robust saliency detection via regularized random walks ranking.In:Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition.Boston,MA,USA:IEEE,2015:2710-2717.
[19] Wu Y,Lim J,Yang M H.Online object tracking:A benchmark.In:Proceedings of 2013 IEEE Conference on Computer Vision and Pattern Recognition.Portland,OR,USA:IEEE,2013:2411-2418. 
[20] Oron S,Bar-Hillel A,Levi D,et al.Locally orderless tracking.International Journal of Computer Vision,2015,111(2):213-228.
[21] Zhang K H,Zhang L,Yang M H.Real-time compressive tracking.In:Proceedings of the 12th European Conference on Computer Vision.Springer Berlin Heidelberg,2012:864-877.
[22] Dinh T B,Vo N,Medioni G.Context tracker:Exploring supporters and distracters in unconstrained environments.In:Proceedings of 2011 IEEE Conference on Computer Vision and Pattern Recognition.Colorado Springs,CO,USA:IEEE,2011:1177-1184.
[23] Sevilla-Lara L,Learned-Miller E.Distribution fields for tracking.In:Proceedings of 2012 IEEE Conference on Computer Vision and Pattern Recognition.Providence,RI,USA:IEEE,2012:1910-1917.

相似文献/References:

备注/Memo

备注/Memo:
基金项目:国家电网公司科技项目(SGLNXT00DKJS1700166),国家自然科学基金(61673204,61273257,61321491),中央高校基本科研业务费(020214380026),江苏省六大人才高峰计划(2013-XXRJ-018)
收稿日期:2017-06-21
*通讯联系人,E-mail:yangyubin@nju.edu.cn
更新日期/Last Update: 2017-08-02