|本期目录/Table of Contents|

[1]董恒平*,陈坤基,宗 波,等.非晶掺氧氮化硅薄膜中N­Si­O发光缺陷态的研究[J].南京大学学报(自然科学),2017,53(3):392.[doi:10.13232/j.cnki.jnju.2017.03.002]
 Dong Hengping*,Chen Kunji,Zong Bo,et al. Investigation on luminescent defect state related to N­Si­O bondingin amorphous oxygenated Silicon nitride film[J].Journal of Nanjing University(Natural Sciences),2017,53(3):392.[doi:10.13232/j.cnki.jnju.2017.03.002]
点击复制

非晶掺氧氮化硅薄膜中N­Si­O发光缺陷态的研究()
     

《南京大学学报(自然科学)》[ISSN:0469-5097/CN:32-1169/N]

卷:
53
期数:
2017年第3期
页码:
392
栏目:
出版日期:
2017-06-01

文章信息/Info

Title:
 Investigation on luminescent defect state related to N­Si­O bonding
in amorphous oxygenated Silicon nitride film
作者:
董恒平123*陈坤基23宗 波1井娥林1王 昊1窦如凤1郭 燕1徐 骏23
 1.南京理工大学泰州科技学院,泰州,225300;2.南京大学电子科学与工程学院,南京,210093;3.南京大学固体微结构物理国家重点实验室,南京,210093
Author(s):
 Dong Hengping123*Chen Kunji23Zong Bo1Jing Elin1Wang Hao1Dou Rufeng1Guo Yan1Xu Jun23
 1.Taizhou Institute of Science and Technology,Nanjing University of Science and Technology,Taizhou,225300,China;2.School of Electronic Science and Engineering,Nanjing University,Nanjing,210093,China;3.National Laboratory of Solid State Microstructures,Nanjing,210093,China
关键词:
 光致发光a ­SiNx∶O薄膜Si ­O键缺陷态
Keywords:
 photoluminescencea ­SiNx∶O filmSi ­O bonddefect state
分类号:
TM23,TN383+.2
DOI:
10.13232/j.cnki.jnju.2017.03.002
文献标志码:
A
摘要:
 在室温下利用等离子体增强化学气相淀积(PECVD)方法制备出非晶掺氧氮化硅(a ­SiNx∶O)薄膜.通过改变硅烷(SiH4)和氨气(NH3)流量比R,可实现薄膜光致发光(PL)峰位在2.06~2.79 eV可见光能量范围内的波长调制.光吸收谱中光吸收峰位与PL峰位重叠,表明薄膜发光来源于光吸收边以下0.65 eV左右处的缺陷态.通过对傅里叶变换红外光谱(FTIR)的键浓度分析和X射线光电子能谱(XPS)Si 2p峰的分峰拟合,发现薄膜PL强度的增强与N­Si ­O键合浓度的升高紧密相关.R=1∶4时,PL强度与N­Si ­O键合浓度同时达到最大.进一步证明了a ­SiNx∶O薄膜中的发光缺陷态与N­Si ­O键合结构密切相关.此外,PL峰位随流量比R的增大而发生红移的现象可能源自于N­Si ­O组态转变造成的缺陷态密度最大位置处的能级偏移和光学带隙变窄引起的价带顶上移.
Abstract:
 In order to investigate deeply the luminescent mechanism of amorphous oxygenated Silicon nitride(a ­SiNx∶O)film,the a ­SiNx∶O thin films were prepared by plasma enhanced chemical vapor deposition(PECVD)at room temperature.By adjusting the flow rate ratio(R)of silane(SiH4)to ammonia(NH3),photoluminescence(PL)with peak position tunable in the visible range from 2.06 to 2.79 eV can be realized.In absorption spectra of a ­SiNx∶O films,the location of absorption peaks were in good agreement with those of corresponding PL.It suggested that the PL originates from radiative recombination at luminescent defect state.Based on the calculation of the energy distance between optical absorption edge and the position of absorption peak,the location of this luminescent defect state was determined to be about 0.65 eV underneath the absorption edge.From the analysis on bonding concentration in Fourier transform infrared(FTIR)spectra and the deconvolution of Si 2p peak in X­ray photoelectron spectra(XPS),it was found that the enhancement of PL was proportional to the increase of N­Si ­O bonding concentration.Both of the PL intensity and N­Si ­O bonding concentration reached the maximum when R=1∶4.The experimental results further certified that luminescent defect state in a ­SiNx∶O film was closely related to N­Si ­O bonding configuration.Finally,an energy band model for photoluminescence of a ­SiNx∶O films was constructed.The carriers were pumped to the exited states,and then relaxed to energy levels of defect states,afterwards recombined via transition between defect state levels and valence band maximum to emit photons.In addition,the phenomenon of the redshift of PL peak with the increase of the flow rate ratio R may arise from two possible reasons,i.e.the shifting of energy level at the maximum position of density of defect state caused by the transformation of N­Si ­O bonding configuration and upward shift of valence band maximum arising from the reduction of optical band gap.

参考文献/References:

 [1] Matsumoto K,Imakita K,Fujili M,et al.Photoluminescence from Si nanocrystals embedded in SiOxNy thin films.Japanese Journal of Applied Physics,2005,44(50):L1547-L1549.
[2] Tewary A,Kekatpure R D,Brongersma M L.Controlling defect and Si nanoparticle lumines­cence from Silicon oxynitride films with CO2 laser annealing.Applied Physics Letters,2006,88(9):093114.
[3] Huang R,Chen K,Qian B,et al.Oxygen induced strong green light emission from low­temperature grown amorphous Silicon nitride films.Applied Physics Letters,2006,89(22):221120.
[4] Ruggeri R,Neri F,Sciuto A,et al.Luminescence properties of SiOxNy irradiated by IR laser 808 nm:The role of Si quantum dots and Si chemical environment.Applied Physics Letters,2012,100(4):042104.
[5] Fujii M,Morimoto S,Kitano S,et al.Low­temperature growth of near­infrared luminescent Bi­doped SiOxNy thin films.Optics Letters,2013,38(20):4224-4227.
[6] Wang X,Huang R,Song C,et al.Effect of barrier layers on electroluminescence from Si/SiOxNy multilayer structures.Applied Physics Letters,2013,102(8):081114.
[7] Yu Z,Qian S,Yu L,et al.Boosting light emission from Si­based thin film over Si and SiO2 nanowires architecture.Optics Express,2015,23(5):5388-5396.
[8] Kohli S,Theil J A,Dippo P C,et al.Nanocrystal formation in annealed a ­SiO0.17N0.07∶H films.Nanotechnology,2004,15(12):1831-1836.
[9] Mannino G,Spinella C,Bongiorno C,et al.Synthesis of crystalline Si quantum dots by millisecond laser irradiation of SiOxNy layers.Journal of Applied Physics,2010,107(2):023703. 
[10] Berencén Y,Wutzler R,Rebohle L.Intense green­yellow electroluminescence from Tb+­implanted Silicon­rich Silicon nitride/oxide light emitting devices.Applied Physics Letters,2013,103(11):111102. 
[11] Xu L,Li S,Jin L,et al.Temperature dependence of sensitized Er3+ luminescence in Silicon­rich oxynitride films.Nanoscale Research Letters,2014,9:489.
[12] Ma Z,Ning X,Zhang W,et al.Hexagonal Ag nanoarrays induced enhancement of blue light emission from amorphous oxidized Silicon nitride via localized surface plasmon coupling.Optics Express,2014,22(23):28180-28189.
[13] Nguyen P D,Kepaptsoglou D M,Ramasse Q M,et al.Impact of oxygen bonding on the atomic structure and photoluminescence properties of Si­rich Silicon nitride thin films.Journal of Applied Physics,2012,112(7):073514.
[14] Dong H,Chen K,Wang D,et al.A new luminescent defect state in low temperature grown amorphous SiNxOy thin films.Physica Status Solidi C,2010,7(3-4):828-831.
[15] Zhang P,Chen K,Dong H,et al.Higher than 60% internal quantum efficiency of photolumine­scence from amorphous Silicon oxynitride thin films at wavelength of 470 nm.Applied Physics Letters,2014,105(1):011113.
[16] Dong H P,Huang R,Wang D Q,et al.Strong green light emission from low­temperature grown a ­SiNx∶H film after different oxidation routes.Chinese Physics Letters,2008,25(11):4147-4150. 
[17] Dong H,Chen K,Zhang P,et al.The role of Nx ­Si ­Oy bonding configuration in acquiring strong blue to red photoluminescence from amorphous SiNxOy film.Canadian Journal of Physics,2014,92:602-605.
[18] Tan X,Wojcik J,Mascher P.Study of the optical properties of SiOxNy thin films by effective medium theories.Journal of Vacuum Science & Technology A,2004,22(4):1115-1119.
[19] Naskar S,Wolter S D,Bower C A,et al.Verification of the O­Si ­N complex in plasma­enhanced chemical vapor deposition Silicon oxynitride films.Applied Physics Letters,2005,87(26):261907.
[20] Kärcher R,Ley L,Johnson R L.Electronic structure of hydrogenated and unhydrogenated amorphous SiNx(0≤x≤1.6):A photoemission study.Physical Review B,1984,30(4):1896-1910.

相似文献/References:

备注/Memo

备注/Memo:
基金项目:江苏省高校自然科学研究面上项目(14KJB510014),南京大学固体微结构物理国家重点实验室开放课题基金(M29026),江苏省“青蓝工程”
收稿日期:2016-10-30
*通讯联系人,E­mail:dhpup1981@163.com
更新日期/Last Update: 2017-05-30