|本期目录/Table of Contents|

[1]吴冬梅,宁仁杰,白 刚*,等. 利用不同沉积温度和衬底控制压电/压磁异质结的磁电耦合系数[J].南京大学学报(自然科学),2017,53(3):407.[doi:10.13232/j.cnki.jnju.2017.03.004]
 Wu Dongmei,Ning Renjie,Bai Gang*,et al. Controlling magnetoelectric coupling effect in piezoelectric/piezomagnetic heterostructure by using deposition temperatures and substrates[J].Journal of Nanjing University(Natural Sciences),2017,53(3):407.[doi:10.13232/j.cnki.jnju.2017.03.004]
点击复制

 利用不同沉积温度和衬底控制压电/压磁异质结的磁电耦合系数()
     

《南京大学学报(自然科学)》[ISSN:0469-5097/CN:32-1169/N]

卷:
53
期数:
2017年第3期
页码:
407
栏目:
出版日期:
2017-06-01

文章信息/Info

Title:
 Controlling magnetoelectric coupling effect in piezoelectric/piezomagnetic heterostructure by using deposition temperatures and substrates
作者:
 吴冬梅1宁仁杰2白 刚234*刘治国3
 1.南京邮电大学自动化学院,南京,210023;2.南京邮电大学电子科学与工程学院,南京,210023;3.南京大学固体微结构物理国家重点实验室,南京,210093;4.南京航空航天大学机械结构力学及控制国家重点实验室,南京,210016
Author(s):
 Wu Dongmei1Ning Renjie2Bai Gang234*Liu Zhiguo3
 1.School of Automation,Nanjing University of Posts and Telecommunications,Nanjing,210023,China;2.College of Electronic Science and Engineering,Nanjing University of Posts and Telecommunications,
Nanjing,210023,China;3.Laboratory of Solid State Microstructures,Nanjing University,Nanjing,210093,China;4.State Key Laboratory of Mechanics and Control of Mechanical Structures,Nanjing University of
Aeronautics and Astronautics,Nanjing,210016,China
关键词:
 磁电耦合热应变压电/压磁异质结热力学
Keywords:
 magnetoelectric couplingthermal strainpiezoelectric/piezomagnetic heterostructurethermodynamics
分类号:
TB332
DOI:
10.13232/j.cnki.jnju.2017.03.004
文献标志码:
A
摘要:
 以生长在不同电极衬底:MgO,c­sapphire,a­sapphire,Si上的钙钛矿PbTiO3(PTO)/Terfenol­D压电/压磁异质结为例,利用唯象热力学理论研究了热应力对压电/压磁异质结磁电耦合效应的影响.计算结果表明,铁电薄膜内的热应力强烈依赖于薄膜沉积温度与衬底、薄膜之间热膨胀系数的差异,而热应力又显著影响磁电耦合性能.对于热膨胀系数大于薄膜材料的衬底,如MgO,铁电薄膜内的热应力为压应力,导致压电/压磁异质结的磁电电压系数增强;对于热膨胀系数小于薄膜材料衬底,如c­sapphire,a­sapphire,Si,铁电薄膜内热应力为拉应力,导致压电/压磁异质结的磁电电压系数减小.研究提出了通过改变沉积温度以及选择合适衬底来调控压电/压磁异质结磁电耦合效应的新思路,为工程上增强压电/压磁异质结磁电耦合性能提供了新的途径.
Abstract:
 The impact of thermal stress on the magnetoelectric coupling in ferroelectric PbTiO3(PTO)/ferromagnetic Terfenol­D heterostructures was investigated based on Landau­Devonshire thermodynamic model.The results show that magnetoelectric coupling property of the heterostructures depends strongly on the thermal stress in PTO films decided by the deposition temperature TG and the thermal expansion coefficients’ difference between PTO films and substrates.For IC­compatible substrates such as Si,c­sapphire,and a­sapphire that induce tensile in plane thermal stresses,the magnetoelectric coupling of PTO/Terfenol­D heterostructures were decreased.Whereas for PTO films on MgO,compressive thermal in­plane stresses can enhance magnetoelectric coupling.Careful choice of the deposition temperature and the thermal expansion coefficients of the substrates might be used as additional design parameters to achieve desirable magnetoelectric coupling properties of multiferroic heterostructures.

参考文献/References:

 

[1] Nan C W,Bichurin M I,Dong S X,et al.Multiferroic magnetoelectric composites:Historical perspective,status,and future directions.Journal of Applied Physics,2008,103:031101.
[2] Wang K F,Liu J M,Ren Z F.Multiferroicity:The coupling between magnetic and polarization orders.Advances in Physics,2009,58:321-448.
[3] Yu P,Chu Y H,Ramesh R.Oxide interfaces:Pathways to novel phenomena.Materials Today,2012,15:320-327.
[4] Hwang H Y,Iwasa Y,Kawasaki M,et al.Emergent phenomena at oxide interfaces.Nature Materials,2012,11:103-113.
[5] Boschker H,Verbeeck J,Egoavil R,et al.Preventing the reconstruction of the polar discontinuity at oxide heterointerfaces.Advanced Function Materials,2012,22:2235-2240.
[6] Yu P,Luo W,Yi D,et al.Interface control of bulk ferroelectric polarization.Proceedings of the National Academy of Sciences of the United States of America,2012,109:9710-9715.
[7] Yu P,Lee J S,Okamoto S,et al.Interface ferromagnetism and orbital reconstruction in BiFeO3­La0.7Sr0.3MnO3 heterostructures.Physical Review Letters,2010,105:027201.
[8] Sadoc A,Mercey B,Simon C,et al.Large increase of the curie temperature by orbital ordering control.Physical Review Letters,2010,104:046804. 
[9] Zeches R J,Rossell M D,Zhang J X,et al.A strain­driven morphotropic phase boundary in BiFeO3.Science,2009,326:977-980.
[10] Jang H,Baek S,Ortiz D,et al.Strain­induced polarization rotation in epitaxial(001)BiFeO3 thin films.Physical Review Letters,2008,101:107602.
[11] Christen H,Nam J,Kim H,et al.Stress­induced R­M­A­M­C­T symmetry changes in BiFeO3 films.Physical Review B,2011,83:144107.
[12] Choudhury S,Li Y L,Chen L Q,et al.Strain effect on coercive field of epitaxial barium titanate thin films.Applied Physics Letters,2008,92:142907.
[13] Kim D H,Lee H N,Biegalski D B,et al.Effect of epitaxial strain on ferroelectric polarization in multiferroic BiFeO3 films.Applied Physics Letters,2008,92:012911.
[14] Vasudevan R K,Morozovska A N,Eliseev E A,et al.Domain wall geometry controls conduction in ferroelectrics.Nano Letters,2012,11:5524-5531. 
[15] Alberca A,Nemes N M,Mompean F J,et al.Magnetoelastic coupling in La0.7Ca0.3MnO3/BaTiO3 ultrathin films.Physical Review B,2013,88:134410.
[16] Biegalski M D,Kim D H,Choudhury S,et al.Strong strain dependence of ferroelectric coercivity in a BiFeO3 film.Applied Physics Letters,2011,98:142902.
[17] Yang G W,Morley N,Sharp J,et al.Strain­mediated converse magnetoelectric coupling strength manipulation by a thin titanium layer.Applied Physics Letters,2016,108:012901.
[18] Pertsev N A,Kohlstedt H,Dkihl B.Strong enhancement of the directmagnetoelectric effect in strained ferroelectric­ferromagnetic thin­film heterostructures.Physical Review B,2009,80:054102.
[19] Kukhar V G,Pertsev N A,Kholkin A L.Thermodynamic theory of strain­mediated direct magnetoelectric effect in multiferroic film­substrate hybrids.Nanotechnology,2010,21:265701.
[20] Janolin P E,Pertsev N A,Sichuga D,et al.Enhancing permittivity of ferroelectric superla­ttices via composition tuning.Physical Review B,2012,85:140401.
[21] Pertsev N A,Prokhorenko S,Dkhil B.Giant magnetocapacitance of strained ferroelectric­ferro­magnetic hybrids.Physical Review B,2012,85:134111.
[22] Guo E J,Dörr K,Herklotz A.Strain controlled ferroelectric switching time of BiFeO3 capacitors.Applied Physics Letters,2012,101:242908.
[23] Zhang C,Zhang L,Shen X,et al.Enhancing magnetoelectric effect in multiferroic composite bilayers via flexoelectricity.Journal of Applied Physics,2016,119(13):062510.
[24] Bai G,Gong X,Liu Z G,et al.External stress enhanced magnetoelectric coupling in multiferroic heterostructures.Journal of Applied Physics,2012,112:114121.
[25] Bai G,Li R,Liu Z G,et al.Tuned dielectric,pyroelectric and piezoelectric properties of ferroelectric P(VDF­TrFE)thin films by using mechanical loads.Journal of Applied Physics,2012,111:044102.
[26] Wu H P,Chai G Z,Xu B,et al.Effect of out­of­plane misfit strain on phase diagrams and ferroelectric properties of ferroelectric films in vertical nanocomposite structures.Applied Physics A,2013,113:155-160.
[27] Zheng X J,Liu X E.A nonlinear constitutive model for Terfenol­D rods.Journal of Applied Physics,2005,97:053901.
[28] Wu T,Zurbuchen M A,Saha S,et al.Observation of magnetoelectric effect in epitaxial ferroelectric film/manganite crystal heterostructures.Physics Review B,2006,73:134416.
[29] Bai G,Liu Z G,Yan X B,et al.Impact of thermal stress on the piezoelectric and dielectric properties of PbTiO3 thick films on various substrates.Journal of Applied Physics,2014,116:054103.



相似文献/References:

备注/Memo

备注/Memo:
 基金项目:国家自然科学基金(51602159),中国博士后科学基金(2016M590449),江苏省自然科学基金(BK20130873),江苏省博士后科学基金(1601242C),南京邮电大学国自基金孵化项目(NY215151,NY214072)
收稿日期:2016-10-27
*通讯联系人,E­mail:baigang@njupt.edu.cn
更新日期/Last Update: 2017-05-30