|本期目录/Table of Contents|

[1]王 彪*,蒋亚立,戴跃伟. 基于l0范数的匹配场源定位方法[J].南京大学学报(自然科学),2017,53(4):675.[doi:10.13232/j.cnki.jnju.2017.04.008]
 Wang Biao*,Jiang Yali,Dai Yuewei. A matched field source localization method based on sparse structure[J].Journal of Nanjing University(Natural Sciences),2017,53(4):675.[doi:10.13232/j.cnki.jnju.2017.04.008]
点击复制

 基于l0范数的匹配场源定位方法()
     

《南京大学学报(自然科学)》[ISSN:0469-5097/CN:32-1169/N]

卷:
53
期数:
2017年第4期
页码:
675
栏目:
出版日期:
2017-08-03

文章信息/Info

Title:
 A matched field source localization method based on sparse structure
作者:
 王 彪12*蒋亚立1戴跃伟1
 1.江苏科技大学电子信息学院,镇江,212003;
2.中国船舶工业系统工程研究院水声对抗技术重点实验室,北京,100036
Author(s):
 Wang Biao12*Jiang Yali1Dai Yuewei1
 1.College of Electronic Information,Jiangsu University of Science and Technology,Zhenjiang,212003,China;
2.Key Laboratory of Underwater Acoustic Warfare Technology,System Engineering Research Institute,Beijing,100036,China
关键词:
 匹配场定位均匀线阵空域稀疏性平滑l0范数
Keywords:
 Matched Field Processinguniform linear arrayspace sparsitysmooth l0 norm
分类号:
TN91
DOI:
10.13232/j.cnki.jnju.2017.04.008
文献标志码:
A
摘要:
 传统的匹配场处理方法存在分辨率低、抗噪性能差、不适用低快拍等问题.近年来出现了一类利用匹配场的空间稀疏性,将源定位转化为物理空间的稀疏重构的定位方法,能够实现高精度的匹配场定位.通常求解这些问题时是将l0范数转换为l1范数.虽然该方法能解决常规的NP-hard问题,在优化求解方面具有一定的优势,但是与直接通过l0范数求解的方法相比,不能很好地描述空间稀疏特性,以至于难以充分体现和利用声场冗余字典的稀疏特点.因此,相比于传统的压缩感知算法,通过分析匹配场的空域稀疏特性,在学习平滑l0范数重构算法的基础上,提出了基于平滑l0范数的匹配场源定位方法.在分析了水下目标定位的稀疏数学模型的基础上,逐渐降低数值逼近参数的方式来得到数学模型的最优解,在保证高精度匹配场定位的同时,减少了运算的时间,提高了匹配场定位的效率.
Abstract:
 Matched field processing techniques have been studied extensively in recent decades,and a lot of detail algorithms have been put forward for practical use.With the rapid development of the theory and algorithms for sparse recovery in finite dimension,compressive sensing(CS)has become an exciting field that has attracted considerable attention in signal processing,such as sound imaging and reconstruction,compressive sensor networks,and so on.We try to locate and match the field sound source by using the compressed sensing method,and find that it can get a better positioning effect than traditional methods.Prior research has established CS as a valuable tool for array signal processing,but it is mainly from a theoretical point of view,and its application to underwater acoustic sources localization has been developed only for very limited scenarios.In this paper,In order to solve the problems of the traditional Matched Field Processing(MFP)method,such as for a long time and which is not suitable for applications with small number of snapshot and array elements,etc.Compared with the traditional compressive sensing algorithm,Matched Field Processing based on smooth l0 norm is proposed from analysis of the characteristics of uniform linear array model and sparse characteristics of matched field,which is combining with smooth l0 norm algorithm.For reconstructing the signal,the method uses combined continuous function as the approximation to smooth l0 norm by sparse matrix processing array manifold,which improves the convergence speed.This method avoids feature decomposition and spectral peak searching process of the traditional algorithm.On the premise of guarantee the estimation precision,it effectively reduces the amount of calculation and the number of the antenna array.At last,by comparing with other source localization methods,such as Bartlett,Minimum variance distortionless response(MVDR),Basis Pursuit(BP) and smooth l0 norm algorithm,simulation results show the effectiveness of the proposed algorithm.

参考文献/References:

 [1] Baggeroer A B,Kuperman W A,Mikhalevsky P N.An overview of matched field methods in ocean acoustics.IEEE Journal of Oceanic Engineering,1993,18(4):401-424.
[2] Capon J.High-resolution frequency-wavenumber spectrum analysis.Proceedings of the IEEE,1969,57(8):1408-1418.
[3] Baraniuk R G.Compressive sensing.IEEE Signal Processing Magazine,2007,24(4):118-121.
[4] Candes E J,Wakin M B.An introduction to compressive sampling.IEEE Signal Processing Magazine,2008,25(2):21-30.
[5] Malioutov D,Cetin M,Willsky A S.A sparse signal reconstruction perspective for source localization with sensor arrays.IEEE Transactions on Signal Processing,2005,53(8):3010-3022.
[6] Fannjiang A,Yan P C,Strohmer T C.Compressed remote sensing of sparse objects.SIAM Journal on Imaging Sciences,2010,3(3):595-618.
[7] 林 波.基于压缩感知的辐射源DOA估计.硕士学位论文.长沙:国防科技大学,2010.(Lin B.DOA estimation based on compressive sensing.Master Dissertation.Changsha:National University of Defense Technology,2010.)
[8] 石绘红.基于稀 !E 唬妒垦宦畚模贾荩赫憬笱В2013.(Shi H H.Sparse-reconstruction-based high resolution matched-field source localization.Master Disser-tation.Hangzhou:Zhejiang University,2013.)
[9] 郭双乐,彭临慧,唐瑞春.基于压缩感知的水下目标定位.中国海洋大学学报,2015,45(10):127-132.(Guo S L,Peng L H,Tang R C.Underwater positioning based on compressed sensing.Periodical of Ocean University of China,2015,45(10):127-132.)
[10] Candès E J,Romberg J K,Tao T.Stable signal recovery from incomplete and inaccurate measurements.Communications on Pure and Applied Mathematics,2006,59(8):1207-1223.
[11] Gorodnitsky I F,George J S,Rao B D.Neuromagnetic source imaging with FOCUSS:A recursive weighted minimum norm algorithm.Electroencephalography and clinical Neurophy-siology,1995,95(4):231-251.
[12] Tropp J A,Gilbert A C.Signal recovery from random measurements via orthogonal matching pursuit.IEEE Transactions on Information Theory,2007,53(12):4655-4666.
[13] Mohimani H,Babaie-Zadeh M,Jutten C.A fast approach for overcomplete sparse decomposition based on smoothed l0 norm.IEEE Transactions on Signal Processing,2009,57(1):289-301.
[14] Ghalehjegh S H,Babaie-Zadeh M,Jutten C.Fast block-sparse decomposition based on sl0.In:Proceedings of 9th International Conference on Latent Variable Anaysis and Signal Separation.Springer Berlin Heidelberg,2010,6365:426-433.
[15] 林婉娟,赵瑞珍,李 浩.用于压缩感知信号重建的NSL0算法.新型工业化,2011,1(7):78-84(Lin W J,Zhao R Z,Li H.The NSL0 algorithm for compressive sensing signal reconstruction.The Journal of New Industrialization,2011,1(7):78-84.)
[16] 王 彪,李 超,李 宇等.一种快速水声目标波达方向估计方法.声学学报,2014,39(5):544-548(Wang B,Li C,Li Y,et al.A fast direction of arrival estimation method for underwater acoustic target.Acta Acustica,2014,39(5):544-548.)

相似文献/References:

备注/Memo

备注/Memo:
 基金项目:国家自然科学基金(11574120),江苏高校高技术船舶协同创新中心/江苏科技大学海洋装备研究院基金(HZ2016010),东南大学水声信号处理教育部重点实验室开放研究基金(UASP1503),水声对抗技术重点实验室基金,江苏省“青蓝工程”,江苏省自然科学基金(BK20161359)
收稿日期:2016-09-25
*通讯联系人,E-mail:237873905@qq.com
更新日期/Last Update: 2017-08-02