|本期目录/Table of Contents|

[1]朱 尧,毛晓蛟,杨育彬*.基于多特征混合模型的视觉目标跟踪[J].南京大学学报(自然科学),2016,52(4):762.[doi:10.13232/j.cnki.jnju.2016.04.020]
 Zhu Yao,Mao Xiaojiao,Yang Yubin*.Visual object tracking based on collaborative model using multiple features[J].Journal of Nanjing University(Natural Sciences),2016,52(4):762.[doi:10.13232/j.cnki.jnju.2016.04.020]
点击复制

基于多特征混合模型的视觉目标跟踪()
     

《南京大学学报(自然科学)》[ISSN:0469-5097/CN:32-1169/N]

卷:
52
期数:
2016年第4期
页码:
762
栏目:
出版日期:
2016-08-01

文章信息/Info

Title:
Visual object tracking based on collaborative model using multiple features
作者:
朱 尧毛晓蛟杨育彬*
南京大学计算机软件新技术国家重点实验室,南京,210023
Author(s):
Zhu YaoMao XiaojiaoYang Yubin*
State Key Laboratory for Novel Software Technology,Nanjing University,Nanjing,210023,China
关键词:
金字塔混合模型多特征目标跟踪
Keywords:
spatial pyramidcollaborative modelmultiple featuresobject tracking
分类号:
TP391
DOI:
10.13232/j.cnki.jnju.2016.04.020
文献标志码:
A
摘要:
用单一特征训练跟踪模型进行跟踪鲁棒性较差,为解决这一问题,提出一种多特征表示的混合模型跟踪方法,将生成跟踪模型与判别跟踪模型结合.在生成模型中,利用金字塔结构计算基于颜色的直方图特征表示并以此来计算目标和候选之间的匹配度;判别模型则采用由灰度特征,HOG特征和LBP特征融合训练得到的SVM分类器来判别候选是否为跟踪目标,接着将匹配度和分类结果结合产生对候选的评估,最终评估最高的候选作为跟踪结果同时也用来更新判别模型的训练集.在CVPR2013跟踪数据集上的实验结果表明,该方法能有效克服局部遮挡和背景干扰等问题,实现在复杂背景下的目标跟踪.
Abstract:
In this work,we focus on short?term single object tracking,which is the most general type of tracking problems.Numerous significant trackers have been proposed over the past few decades.As we can see from these trackers,using a single type of feature to train the tracking model is a drawback,which usually leads to poor robustness in object tracking.On the other hand,the tracking result of a single tracker can sometimes be very unstable due to the complication of video sequences.Aiming at addressing these problems,we propose a collaborative tracking model fusing hybrid features in this paper.A generative model,which uses color?based features to compute the matching scores between target object and candidates,is combined with a discriminative model,which trains SVM with gray?scale,HOG and LBP features to classify the candidates as target or non?target objects.A spatial pyramid model is adopted in the feature calculation process of the generative model for a better description of the target and candidates.Then,the matching score and classification score are fused to rank the candidates.All the candidates are produced under the particle filter framework.The top?ranked candidate is regarded as the target object and used to update the training set for discriminative model as well.Besides,different update scheme and frequency are used for the two parts of the collaborative model.The ensemble does not impair the performance of the tracking precision but slightly outperform the single model.Finally,we compare our results with other trackers along with some analysis.The experimental results on visual tracking benchmark CVPR2013 demonstrate that our approach is effective for partial occlusion and background clutter in tracking,thus realizes desirable tracking performance under complex conditions.

参考文献/References:

[1] Wang N,Shi J,Yeung D Y,et al.Understanding and diagnosing visual tracking systems.In:IEEE International Conference on Computer Vision.Santiago:IEEE Computer Society,2015:3101-3109. [2] Black M J,Jepson A D.Eigentracking:Robust matching and tracking of articulated objects using a view?based representation.Internatiion Journal of Computer Vision,1998,26(1):63-84. [3] Adam A,Rivlin E,I.Shimshoni.Robust fragments?based tracking using the integral histogram.In:Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.New York:IEEE Computer Society,2006:798-805. [4] Kwon J,Lee K M.Visual tracking decomposition.In:IEEE Conference on Computer Vision and Pattern Recognition.San Francisco:IEEE Computer Society,2010:1269-1276. [5] Zhang T,Liu S,Ahuja N,et al.Robust visual tracking via consistent low?rank sparse learning.International Journal of Computer Vision,2015,111(2):171-190. [6] Mei X,Ling H.Robust visual tracking using minimization.In:IEEE 12th International Conference on Computer Vision.Kyoto:IEEE Computer Society,2009:1436-1443. [7] Jia X,Lu H,Yang M H.Visual tracking via adaptive structural local sparse appearance model.In:IEEE Conference on Computer Vision and Pattern Recognition.Providence:IEEE Computer Soceity,2012:1822-1829. [8] Zhang T,Liu S,Xu C,et al.Structural sparse tracking.In:IEEE Conference on Computer Vision and Pattern Recognition.Boston:IEEE Computer Society,2015:150-158. [9] Zhong W,Lu H,Yang M H.Robust object tracking via sparsity?based collaborative model.In:IEEE Conference on Computer Vision and Pattern Recognition.Providence:IEEE Computer Society,2012:1838-1845. [10] Collins R T,Liu Y.On?line selection of discriminative tracking features.In:IEEE International Conference on Computer Vision.Nice:IEEE Computer Society,2003:346-352. [11] Avidan S.Ensemble tracking.IEEE Transactions on Pattern Analysis and Machine Intelligence,2007,29(2):261-271. [12] Grabner H,Bischof H.On?line boosting and vision.In:IEEE Conference on Computer Vision and Pattern Recognition.New York:IEEE Computer Society,2006:260-267. [13] Babenko B,Yang M H,Belongie S,et al.Visual tracking with online multiple instance learning.In:IEEE Conference on Computer Vision and Pattern Recognition.Miami:IEEE Computer Society,2009:983-990. [14] Hare S,Saffari A,Torr P H S.Struck:Structured output tracking with kernels.In:IEEE International Conference on Computer Vision.Barcelona:IEEE Computer Society,2011:263-270. [15] Hong S,You T,Kwak S,et al.Online tracking by learning discriminative saliency map with convolutional neural network.In:The 32nd International Conference on Machine Learning.Lille:JMLR.org,2015:597-606. [16] Wang N,Li S,Gupta A,et al.Transferring rich feature hierarchies for robust visual tracking.CoRR,2015,abs/1501.04587. [17] Wu Y,Lim J,Krupk E,et al.Online object tracking:A benchmark.In:IEEE Conference on Computer Vision and Pattern Recognition.Portland:IEEE Computer Society,2013:2411-2418. [18] Zhu G,Wang J,Li C,et al.Collaborative tracking:Dynamically fusing short?term trackers and long?term detector.In:The 19th International Conference on Advances in Multimedia Modeling.Huangshan:Springer,2013:457-467. [19] Hong Z,Chen Z,Wang C,et al.Multi?Store Tracker(MUSTer):A cognitive psychology inspired approach to object tracking.In:IEEE Conference on Computer Vision and Pattern Recognition.Boston:IEEE Computer Society,2015:749-758. [20] Zhou Y,Bai X,Liu W Y,et al.Fusion with diffusion for robust visual tracking.In:The 26th Annual Conference on Neural Information Processing Systems.Lake Tahoe:MIT Press,2012:2987-2995. [21] Zhou Y,Bai X,Liu W Y,et al.Similarity fusion for visual tracking.International Journal of Computer Vision,2016:1-27. [22] Li Q N,Wang X G,Wang W,et al.Disagreement?based multi?system tracking.In:The 11th Asian Conference on Computer Vision.Daejeon:Springer,2012:320-334. [23] Haug A J.A tutorial on bayesian estimation and tracking techniques applicable to nonlinear and non?gaussian processe.Technical Report.The MITRE Corporation,McLean,Virginia,2005-01. [24] Danelljan M,Khan F S,Felsberg M,et al.Adaptive color attributes for real?time visual tracking.In:IEEE Conference on Computer Vision and Pattern Recognition.Columbus:IEEE Computer Society,2014:1090-1097. [25] Possegger H,Mauthner T,Bischof H.In defense of color?based model?free tracking.In:IEEE Conference on Computer Vision and Pattern Recognition.Boston:IEEE Computer Society,2015:2113-2120. [26] Zhang Z,Wong K H.Pyramid?based visual tracking using sparsity represented mean transform.In:IEEE Conference on Computer Vision and Pattern Recognition.Columbus:IEEE Computer Society,2014:1226-1233. [27] Ojala T,Pietikainen M,Harwood D.A comparative study of texture measures with classification based on feature distributions.Pattern Recognition,1996,29(1):51-59. [28] Dalal N,Triggs B.Histograms of oriented gradients for human detection.In:IEEE Conference on Computer Vision and Pattern Recognition.San Diego:IEEE Computer Society,2005:886-893. [29] Henriques J,Caseiro R,Martins P,et al.Exploiting the circulant structure of tracking?by?detection with kernels.In:The 12th European Conference on Computer Vision.Florence:Springer,2012:702-715. [30] Zhang K,Zhang L,Yang M H.Real?time compressive tracking.In:The 12th European Conference on Computer Vision.Florence:Springer,2012:864-877. [31] Lara L S,Miller E L.Distribution fields for tracking.In:IEEE Conference on Computer Vision and Pattern Recognition.Providence:IEEE Computer Society,2012:1910-1917.

相似文献/References:

备注/Memo

备注/Memo:
基金项目:国家自然科学基金(61273257,61321491),江苏省六大人才高峰计划(2013-XXRJ-018) 收稿日期:2016-04-05 *通讯联系人,E-mail:yangyubin@nju.edu.cn
更新日期/Last Update: 2016-07-26