|本期目录/Table of Contents|

[1]曹少华,曾献奎,蒋建国,等. 基于局域化集合卡尔曼滤波的含水层弥散度场识别研究[J].南京大学学报(自然科学),2016,52(3):429-437.[doi:10.13232/j.cnki.jnju.2016.03.003]
 Cao Shaohua,Zeng Xiankui,Jiang Jianguo,et al. An approach based on localizaed ensemble Kalman filter to identify groundwater dispersivity field [J].Journal of Nanjing University(Natural Sciences),2016,52(3):429-437.[doi:10.13232/j.cnki.jnju.2016.03.003]
点击复制

 基于局域化集合卡尔曼滤波的含水层弥散度场识别研究()
     

《南京大学学报(自然科学)》[ISSN:0469-5097/CN:32-1169/N]

卷:
52
期数:
2016年第3期
页码:
429-437
栏目:
复杂地下水系统模拟
出版日期:
2016-06-01

文章信息/Info

Title:
 An approach based on localizaed ensemble Kalman filter to identify groundwater dispersivity field
作者:
 曹少华曾献奎蒋建国吴吉春*
 表生地球化学教育部重点实验室,南京大学地球科学与工程学院水科学系,南京,210023
Author(s):
 Cao ShaohuaZeng XiankuiJiang JianguoWu Jichun*
 Key Laboratory of Surficial Geochemistry,Ministry of Education,Department of Hydrosciences, School of Earth Science and Engineering,Nanjing University,Nanjing,210023,China
关键词:
 局域化集合卡尔曼滤波数据同化溶质浓度观测数据弥散度场
Keywords:
 localized Ensemble Kalman Filter(EnKF)data assimilationsolute concentration observation datadispersivity field
分类号:
P641
DOI:
10.13232/j.cnki.jnju.2016.03.003
文献标志码:
A
摘要:
 溶质运移模型对下水污染物运移预测有重要意义,但是准确获取模型参数具有一定难度.集合卡尔曼滤波(EnKF)方法可以融合多来源观测数据对同化系统进行优化修正,从而得到与真实情况接近的参数.将二维承压含水层理想算例的溶质观测数据应用于局域化集合卡尔曼滤波同化系统,估计含水层的弥散度场,并探讨了模型实现数目、初始猜想场的统计特征、观测点数目及时空分布、观测误差对参数估计结果的影响.结果表明,通过同化浓度观测资料可较好地估计溶质运移模型的弥散度场;对于所用模型,实现数目在100~700时,参数估计结果最好;初始猜想场与实际场越接近、观测数据误差越小,越能快速获得较好的估计结果.
Abstract:
 Solute transport simulation is significantly important to predict contaminant transport,however,the parameters used in the model are very difficult to obtain precisely.Ensemble Kalman Filter(EnKF)assimilates observation data from multiple sources to get parameters approach to the real values.In this paper,we assimilate solute transport data observed from a two­dimensional confined aquifer with a covariance localized Ensemble Kalman Filter system to estimate the real dispersivity field.The effects of the number of realizations,statistical characteristic of initial assumed field,the number of observations,configuration of observations,and observation error on the efficiency of this method are investigated.Results indicate that a well estimated dispersivity field can be obtained by assimilating transport data with localized EnKF.The optimal number of realization is from 100 to 700 for the model we study,and excessive or insufficient number of realizations affect the accuracy of the assimilation results.A better estimation results can be obtained if initial assumed field is similar with the real logarithmic dispersivity field and the observation error is small.

参考文献/References:

 [1] 薛禹群,吴吉春.面临21世纪的中国地下水模拟问题.水文地质工程地质,1999(5):3-5.(Xue Y Q,Wu J C.Some overall key problems of groundwater modeling when we are faced with the 21st century.Hydrogeology & Engineering Geology,1999(5):3-5.)
[2] 薛禹群,吴吉春.地下水动力学.第三版.北京:地质出版社,2010:1-2.(Xue Y Q,Wu J C.Groundwater dynamics.The 3rd Edition.Beijing:Geological Publishing House,2010:1-2.)
[3] Evensen G.Sequential data assimilation with a nonlinear quasi­geostrophic model using Monte Carlo methods to forecast error statistics.Journal of Geophysical Research,1994,99(C5):10143-10162.
[4] Cohn S E.An introduction to estimation theory.Journal­Meteorological Society of Japan Series 2.1997,75(1B):147-178.
[5] Chen Y,Zhang D X.Data assimilation for transient flow in geologic formations via Ensemble Kalman Filter.Advances in Water Resources,2006,29(8):1107-1122.
[6] Huang C,Bill X H,Li X,et al.Using data assimilation method to calibrate a heterogeneous conductivity field and improve solute transport prediction with an unknown contamination source.Stochastic Environmental Research and Risk Assessment,2009,23(8):1155-1167.
[7] Tong J X,Hu B X,Yang J Z.Using data assimilation method to calibrate a heterogeneous conductivity filed conditioning on a transient flow test data.Stochastic Environmental Research and Risk Assessment,2010,24(8):1211-1223.
[8] Chen Y,Oliver D S.Ensemble­based closed­loop optimization applied to brugge field.SPE Reservoir Evaluation & Engineering,2010,13(1):56-71.
[9] Nan T C,Wu J C.Groundwater parameter estimation using the ensemble Kalman filter with localization.Hydrogeology Journal,2011,19(3):547-561.
[10] Tong J X,Hu B X,Yang J Z.Assimilating transient groundwater flow data via a localized ensemble Kalman filter to calibrate a heterogeneous conductivity field.Stochastic Environmental Research and Risk Assessment,2012,26(3):467-478.
[11] Tong J X,Hu B X,Huang H,et al.Application of a data assimilation method via an ensemble Kalman filter to reactive urea hydrolysis transport modeling.Stochastic Environmental Research and Risk Assessment,2013,28(3):729-741.
[12] Xu T,Gómez­Hernández J J.Inverse sequential simulation:A new approach for the characterization of hydraulic conductivities demonstrated on a non­Gaussian field.Water Resources Research,2015,51(4):2227-2242.
[13] 崔凯鹏,吴吉春.观测数据时空密度对集合卡尔曼滤波计算精度的影响.水利学报,2013,44(8):916-623.(Cui K P,Wu J C.Effect of observation data time/spatial density on Ensemble Kalman Filter.Journal of Hydraulic Engineering,2013,44(8):916-623.)
[14] Zhang D X,Lu Z.An efficient,high­order perturbation approach for flow in random porous media via Karhunen–Loeve and polynomial expansions.Journal of Computational Physics,2004:194(2):773-94.
[15] McDonald M G,Harbaugh A W.A modular three­dimensional finite­difference ground­water flow model.US Geological Survey Techniques of Water­Resources Investigations,1988.
[16] Zheng C M,Wang P P.A modular three­dimensional multi­species transport model for simulation of advection,dispersion and chemical reactions of contaminants in groundwater systems;documentation and user’s guide.US Army Engineer Research and Development Center Contract Report SERDP­99­1,Vicksburg,Mississippi,USA,1999.

相似文献/References:

备注/Memo

备注/Memo:
 国家自然科学基金(41302181,41172207,51190091)
更新日期/Last Update: 2016-07-02