|本期目录/Table of Contents|

[1]耶楠,冯学智?,肖鹏峰,等.玛纳斯河流域积雪遥感地面同步观测[J].南京大学学报(自然科学),2015,51(5):921-928.[doi:10.13232/j.cnki.jnju.2015.002]
 Ye Nan,Feng Xuezhi,Xiao Pengfeng,et al.Snow remote sensing field experiments in Manasi River Basin[J].Journal of Nanjing University(Natural Sciences),2015,51(5):921-928.[doi:10.13232/j.cnki.jnju.2015.002]
点击复制

玛纳斯河流域积雪遥感地面同步观测()
     

《南京大学学报(自然科学)》[ISSN:0469-5097/CN:32-1169/N]

卷:
51
期数:
2015年第5期
页码:
921-928
栏目:
出版日期:
2015-10-01

文章信息/Info

Title:
Snow remote sensing field experiments in Manasi River Basin
作者:
耶楠123冯学智123?肖鹏峰123贺广均1234陈妮123张学良123 朱榴骏123汪左123李敏123蒋璐媛123
(1. 江苏省地理信息技术重点实验室,南京大学,南京,210023;
2. 卫星测绘技术与应用国家测绘地理信息局重点实验室,南京大学,南京,210023;
3. 南京大学地理信息科学系,南京大学,南京,210023;
4.天地一体化信息技术国家重点实验室,航天恒星科技有限公司,北京,100086)
Author(s):
Ye Nan123 Feng Xuezhi123 Xiao Pengfeng123 He Guangjun1234Chen Ni123 Zhang Xueliang123 Zhu Liujun123 Wang Zuo123 Li Min123 Jiang Luyuan123
(1. Jiangsu Provincial Key Laboratory of Geographic Information Science and Technology, Nanjing University;
2. Key Laboratory for Satellite Mapping Technology and Applications of State Administration of Surveying, Mapping and Geoinformation of China, Nanjing University;
3. Department of Geographic Information Science, Nanjing University;?
4.State Key Laboratory of Space-Ground Integrated Information Technology,Company Limited,Beijing)
关键词:
积雪遥感 高分辨率光学遥感 合成孔径雷达 野外观测 玛纳斯河流域
Keywords:
Snow remote sensing high resolution optical remote sensing SAR field experiments Manasi River Basin
分类号:
-
DOI:
10.13232/j.cnki.jnju.2015.002
文献标志码:
-
摘要:
积雪作为冰冻圈主要组成部分,是全球能量和水循环的重要环节。利用卫星遥感技术获取的高时空分辨率的积雪分布和状态信息对寒区水资源管理、经济发展和社会稳定具有重要意义。目前,利用高分辨率光学和合成孔径雷达(Synthetic Aperture Radar:SAR)卫星数据能够实现积雪覆盖范围的识别和雪层物化参数的反演,但识别和反演的精度在高寒山区条件下受地形影响严重。为改进现有识别和反演模型在山区条件下的适应性,以新疆天山北坡玛纳斯河流域为研究区,分别在2013年冬季积雪期和2014年春季融雪期进行了两次与SAR卫星同步的野外积雪观测,为山区积雪识别和积雪参数反演获取了地面实测光谱和积雪参数数据。本文对两次积雪观测的目的、方法和初步结果进行介绍。观测初步结果显示了积雪在研究区内空间分布不均一,季节性差异性明显,为后续通过高分辨率遥感手段获取山区积雪参数时间和空间变异性提供了基础。

Abstract:
Snow is a key component in cryosphere, which plays a significant role in global energy and water cycles. The development of space-borne remote sensing techniques on monitoring snow cover and status distribution with high temporal and spatial resolution will benefit water resource management,economic growth,and social stability of cold areas. To date snow cover area can be identified using high resolution optical sensor from the space, and physical properties of snow pack can be retrieved from Synthetic Aperture Radar (SAR) satellite observations. However, the accuracy of identification and retrieval is adversely affected by topography in mountainous areas. To improve the suitability of identification and retrieval models, two field experiments dedicated to snow remote sensing were conducted during the winter of 2013 and the spring of 2014 over a study area of Manas River Basin on north face of the Tianshan Mountains, Xinjiang Province. Intensive in-situ spectral and snow properties sampling were carried out coincident with the coverage of satellite observations. The objectives, methodology, and preliminary results of these two field experiments are presented in this paper. The preliminary results show a significant heterogeneous distribution and seasonal variation of snow in the study area, and the potential of using high resolution remote sensing techniques to capture the temporal and spatial variability of mountainous snow.

参考文献/References:

[1] Nolin A W, Stroeve J. The changing albedo of the Greenland ice sheet: implications for climate modeling. Annals of Glaciology, 1997, 25: 51-57.
[2] Ross B, Walsh J. Synoptic-scale influences of snow cover and sea ice. Monthly Weather Review, 1986, 114(10):1795-1810.
[3] Barnett T P, Dumenil L, Schlese U, et al. The effect of Eurasian snow cover on regional and global climatic variations. Journal of Atmospheirc Science, 1989, 46(5):661-685.
[4] Armstrong R L, Brodzik M J. Hemishperic-scale comparison and evaluation of passive-microwave snow algorithm. Annals of Glaciology, 2002. 34:38-44.
[5] 施雅风, 程国栋. 冰冻圈与全球变化. 中国科学院院刊, 1991, (4): 287-291.
[6] Rango A. Snow hudrology processes and remote-sensing. Hydrological Processes, 1993, 7(2):121-138.
[7] Rango A, Shalaby A I. Operational applications of remote sensing in hydrology: success, prospects and problems. Hydrological Sciences Journal, 1998, 43(6):947-968.
[8] 梁天刚, 高新华, 黄晓东等. 新疆北部MODIS积雪制图算法的分类精度. 干旱区研究, 2007, 4:446-452.
[9] 车涛, 李新, 高峰. 青藏高原积雪深度和雪水当量的被动微波遥感反演. 冰川冻土, 2004, 3:363-368.
[10] 王建, 李文君. 中国西部大尺度流域建立分带式融雪径流模拟模型. 冰川冻土, 1999, 3:264-268.
[11] 冯学智, 鲁安新. 中国主要牧区雪灾遥感监测评估模型研究. 遥感学报, 1997, 2:129-134.
[12] Morena L C, James K V, Beck J. An introduction to the RADARSAT-2 mission. Canadian Journal of Remote Sensing, 30.3 (2004): 221-234.
[13] Werninghaus R. TerraSAR-X mission. Remote Sensing, International Society for Optics and Photonics, 2004.
[14] Coletta A, Angino G, Battazza F, et al. COSMO-SkyMed program: Utilization and description of an advanced space EO dual-use asset. Proc. Envisat Symp, 2007.
[15] 党新成, 李新贤, 高建芳. 玛纳斯河流域水文与环境特征分析. 水文, 2006, 5:89-90.
[16] 冯学智, 李文君. 卫星雪盖监测与玛纳斯河融雪径流模拟. 遥感技术与应用, 2000, 1:18-21.

相似文献/References:

备注/Memo

备注/Memo:
?国家高分辨率对地观测系统重大专项项目(95-Y40B02-9001-13/15-04),国家自然科学基金项目(41271353)
更新日期/Last Update: 2015-09-10