|本期目录/Table of Contents|

[1]陈妮,冯学智*,肖鹏峰,等.玛纳斯河流域春季雪层参数特性分析[J].南京大学学报(自然科学),2015,51(5):936-943.[doi:10.13232/j.cnki.jnju.2015.004]
 Chen Ni,Feng Xuezhi,Xiao Pengfeng,et al.Analysis of snow layer parameters in Manasi River Basin[J].Journal of Nanjing University(Natural Sciences),2015,51(5):936-943.[doi:10.13232/j.cnki.jnju.2015.004]
点击复制

玛纳斯河流域春季雪层参数特性分析()
     

《南京大学学报(自然科学)》[ISSN:0469-5097/CN:32-1169/N]

卷:
51
期数:
2015年第5期
页码:
936-943
栏目:
出版日期:
2015-10-01

文章信息/Info

Title:
Analysis of snow layer parameters in Manasi River Basin
作者:
陈妮123冯学智123*肖鹏峰123 贺广均1234
(1. 南京大学江苏省地理信息技术重点实验室,南京,210023; 2. 卫星测绘技术与应用国家测绘地理信息局重点实验室,南京大学,南京,210023; 3. 南京大学地理信息科学系,南京,210023; 4天地一体化信息技术国家重点实验室,航天恒星科技有限公司,北京,100086 )
Author(s):
Chen Ni123 Feng Xuezhi123 Xiao Pengfeng123He Guangjun1234
(1. Jiangsu Provincial Key Laboratory of Geographic Information Science and Technology, Nanjing University; 2. Key Laboratory for Satellite Mapping Technology and Applications of State Administration of Surveying, Mapping and Geoinformation of China, Nanjing University; 3. Department of Geographic Information Science, Nanjing University; 4.State Key Laboratory of Space-Ground Integrated Information Technology,Company Limited,Beijing)
关键词:
积雪深度积雪密度体积含水量剖面温度玛纳斯河流域
Keywords:
snow depth snow density volumetric water content snow temperature profile Manasi River Basin
分类号:
-
DOI:
10.13232/j.cnki.jnju.2015.004
文献标志码:
-
摘要:
采用2014年春季野外观测的新疆玛纳斯河流域积雪物理特性数据(积雪深度、积雪密度、体积含水量、雪层温度),分析了流域融雪期的积雪参数特征,及其在垂直剖面上的廓线分布。结果表明:(1)研究区在融雪期的积雪随着深度的增加而温度逐渐降低,部分地区积雪保温作用明显,保温层位于雪表层下约10cm位置;(2)流域北部低山区雪密度随着积雪深度的增加逐步减小,高山区和亚高山区雪密度的垂直廓线呈现为中部大、积雪表层和底部小的分布特征;(3)北部低山区积雪体积含水量高于高山区和亚高山区,垂直廓线呈单峰曲线,峰值距雪表面约12cm;南部高山区和亚高山区积雪以潮雪为主,雪层含水量存在层位变化。
Abstract:
The snow features within the snow cover profiles in the unstable period are discussed, based on the data collected from ManasiRiver Basin, Xinjiang Province in spring of 2014. It is found that thesnow temperaturereduces with the increase of snow depth.The heat-preserving effect of snow is significant in some area, and the heat-preserving layers locate in the depth of proximity 10 cm. The snow densityreduces with the increase of snow depth in north low mountain areaof ManasiRiver basin during the unstable period, while the snow density at the top and bottom is smaller than that at the middle in south high mountain and subalpine area of the basin. The liquid water content of low mountain area is larger than that of high mountainous and subalpine area, and the maximum liquid water content takes place at 12 cm below the surface. The liquid water content varies obviously between layers in south high altitude area, which is covered by slight wet snow

参考文献/References:

李培基. 中国积雪分布. 冰川冻土, 1983, 5(4): 9–18.
[2] 高卫东, 魏文寿, 张丽旭. 近30年来天山西部积雪与气候变化——以天山积雪雪崩研究站为例. 冰川冻土, 2005,27(1): 68–73.
[3] 璩向宁, 汪一鸣. 近一千年来贺兰山积雪和气候变化.地理研究, 2006, 25(1): 35–42.
[4] 李培基. 中国季节性积雪资源的初步评价. 地理学报, 1988, 43(2): 108–119.
[5] 徐俊荣, 仇家琪. 天山地区30年来冬季降雪波动研究. 冰川冻土, 1996, 18(增刊): 123–128.
[6] Max K, Jan–Gunnar W, Elisabeth I. Measuring snow andglacier ice properties from satellite. Reviews of Geophysics,2001, 39(1): 1–27.
[7] 王秋香, 魏文寿, 王金民. 新疆北疆最大积雪深度EOF展开场的时间变化规律. 冰川冻土, 2008, 30(2): 244–249.
[8] 延昊, 张佳华. 基于SSM/I被动微波数据的中国积雪深度遥感研究. 山地学报, 2008, 26(1): 59–64.
[9] Dozier J, Melack J M, Elder K,et al.Snow, snowmelt, rain,runoff, and chemistry in a Sierra Nevada watershed. In: FinalReport, California Air Resources Board. Sacramento:California,Contract, 1989, A6–147–32.
[10] 周石硚, 中尾正义, 桥本重将等. 水在雪中下渗的数学模拟. 水利学报, 2001(1): 6–10.
[11] 马虹, 刘一峰, 胡汝骥. 天山季节性积雪的能量平衡研究和融雪速率模拟. 地理研究, 1993, 12(1): 87–92.
[12] 杨大庆, 张寅生, 张志忠. 乌鲁木齐河源雪密度观测研究. 地理学报, 1992, 47(3): 260–266.
[13] 赵哈林, 周瑞莲, 赵悦. 雪生态学研究进展. 地球科学进展, 2004, 19(2): 296–304.
[14]周石硚, 中尾正义, 桥本中将等. 湿雪的密实化与粗颗粒化过程研究. 冰川冻土, 2002, 24(3): 275–281.
[15]Sergey AS. Parameters influencing the recrystallization rate of snow. Cold Regions Science and Technology, 2001, 33(2–3): 263–274.
[16] Martinec J, Rango A. Parameter values for snowmelt runoffmodeling. Journal of Hydrology, 1986, 84(3–4): 197–219.
[17]Bernier P Y. Microwave remote sensing of snow pack properties: potential and limitations. Nordic Hydrology, 1987,18: 1–20.
[18]张志忠. 天山巩乃斯河谷湿雪雪崩成因初步分析.冰川冻土,1986,04:403–408+424.
[19]郝晓华,王建,车涛等. 祁连山区冰沟流域积雪分布特征及其属性观测分析. 冰川冻土,2009,02:284–292.
[20 ]Sihvola A, Tiuri M. Snow Fork for field determination ofthe density and wetness profiles of a snow pack. Transactionson Geoscience and Remote Sensing, 1986, GE–24: 717–721.
[21]Kendra J R, UlabyF T, Sarabandi K. Snow probe for insitu determination of wetness and density. Transactionson Geoscience and Remote Sensing, 1994, 32(6): 1152–1159.
[22]高培,魏文寿,刘明哲等. 天山西部季节性积雪密度及含水率的特性分析. 冰川冻土,2010,04:786–793.
[23]陈爱京,黄海云,张璞等. 北疆积雪参数特征分析. 沙漠与绿洲气象,2011,04:5–8.
[24] 张璞,李贤成,刘艳等.玛纳斯河流域冬季气候对春季融雪径流的影响分析. 中国气象学会.第28届中国气象学会年会——S6冰冻圈与极地气象学.中国气象学会,2011:10.
[25] 黄慰军, 黄镇, 崔彩霞等.新疆雪密度时空分布及其影响特征研究.冰川冻土, 2007, 29(1): 66–72.
[26] 陆恒,魏文寿,刘明哲等. 天山季节性积雪稳定期雪密度与积累速率的观测分析. 冰川冻土,2011,02:374–380.
[27]温家洪, 康建成, 汪大立等. 东南极伊利莎白公主地LGB65点的雪层密度与剖面特征. 冰川冻土, 2001, 23(2): 156–163.
[28] 王飞腾, 李忠勤, 尤晓妮等. 乌鲁木齐河源1号冰川积累区表面雪层演化成冰过程的观测研究. 冰川冻土, 2006, 28(1): 45–53.
[29] 张志忠, 杨大庆. 乌鲁木齐河流域季节积雪的基本特征. 冰川冻土, 1992, 14(2): 129–133.
[30] Kanto E. Snow Characteristics in Dronning Maud land. Helsinki: Academic Dissertation in Geophysics, 2006: 15–16.

相似文献/References:

备注/Memo

备注/Memo:
国家自然科学基金项目(41271353),国家高分辨率对地观测系统重大专项项目(95-Y40B02-9001-13/15-04)
更新日期/Last Update: 2015-09-09