|本期目录/Table of Contents|

[1]杨永可,冯学智*,肖鹏峰,等.玛纳斯河流域山区积雪反射光谱特征分析[J].南京大学学报(自然科学),2015,51(5):929-935.[doi:10.13232/j.cnki.jnju.2015.003]
 Yang Yongke,,et al.Spectral characteristic analysis of snow in mountainous areas of Manasi River Basin[J].Journal of Nanjing University(Natural Sciences),2015,51(5):929-935.[doi:10.13232/j.cnki.jnju.2015.003]
点击复制

玛纳斯河流域山区积雪反射光谱特征分析()
     

《南京大学学报(自然科学)》[ISSN:0469-5097/CN:32-1169/N]

卷:
51
期数:
2015年第5期
页码:
929-935
栏目:
出版日期:
2015-10-01

文章信息/Info

Title:
Spectral characteristic analysis of snow in mountainous areas of Manasi River Basin
作者:
杨永可123冯学智123*肖鹏峰123贺广均1234
(1. 江苏省地理信息技术重点实验室,南京大学,南京,210023; 2. 卫星测绘技术与应用国家测绘地理信息局重点实验室,南京大学,南京,210023; 3. 南京大学地理信息科学系,南京,210023; 4.天地一体化信息技术国家重点实验室,航天恒星科技有限公司,北京,100086)
Author(s):
Yang Yongke1 2 3 Feng Xuezhi1 2 3( Xiao Pengfeng1 2 3 He Guangjun1 2 34
(1. Jiangsu Provincial Key Laboratory of Geographic Information Science and Technology, Nanjing University; 2. Key Laboratory for Satellite Mapping Technology and Applications of State Administration of Surveying, Mapping and Geoinformation of China, Nanjing University; 3. Department of Geographic Information Science, Nanjing University; 4State Key Laboratory of Space-Ground Integrated Information Technology,Company Limited,Beijing )
关键词:
山区积雪光谱分析污染物雪粒径含水量玛纳斯河流域
Keywords:
Snow in mountainous areas spectral analysis snow pollutant snow grain size volumetric water content Manasi River Basin
分类号:
-
DOI:
10.13232/j.cnki.jnju.2015.003
文献标志码:
-
摘要:
以新疆玛纳斯河流域为研究区,利用野外实测的山区积雪光谱数据(波段范围为350~2500 nm),分析研究区内的典型地物光谱曲线特征,以及新雪、污化雪、陈雪和风吹雪的反射特性,探讨污染物类型和浓度、雪层含水量、雪粒径、雪与枯草混合物对积雪反射特性的影响,为山区积雪识别提供依据。结果表明:受污染物、雪层含水量、雪粒径、雪与枯草混合物等因素影响,污化雪、陈雪、雪与枯草混合物的光谱曲线兼有积雪与非雪地物的反射特性;在可见光波段,污化雪、陈雪的反射率有不同程度的下降,但是依然高于非雪地物的反射率;在近红外波段,新雪、污化雪、陈雪、风吹雪、雪与枯草混合物的光谱曲线在1020 nm、1250 nm处均出现积雪特有的吸收谷,在1080 nm、1320 nm、2246 nm波段均出现积雪特有的反射峰。另外,污染物在降低积雪反射率的同时,使得污化雪在可见光波段的光谱曲线呈现上升趋势,即呈现污染物自身的光谱曲线特征,与其它类型的积雪形成明显对比,是区分污化雪与其它类型积雪的关键所在。
Abstract:
Spectral characters analysis of snow is an important base for snow identifying in mountainous area of Manasi River Basin, Xinjiang Province. Three field experiments were conducted for snow observation and spectral data collecting over study area. Spectral characteristic comparison between (1) snow and non-snow cover types, (2) new snow, polluted snow, aged snow, and blowing snow were performed firstly. Then, we analyzed the influence of pollutants, snow grain size, and volumetric water content on snow reflectance. The results show that although the spectral reflectance of aged snow, polluted snow, blowing snow, and snow and grass mixture has decreased at different degree in visible light band, they are still higher than the reflectance of non-snow cover type. In the near-infrared band, new snow, polluted snow, aged snow, blowing snow, snow and grass mixtures all appear with obvious spectral absorption peaks at 1020 nm、1250 nm, and obvious absorption valley at 1080 nm、1320 nm、2246 nm, which are obvious different from the spectral curve of non-snow cover type. In addition, the upward trend of spectral curve of polluted snow at visual light band provides an important foundation for its identification from other kinds of snow

参考文献/References:

[1] 李培基. 1951~1997年中国西北地区积雪水资源的变化. 中国科学(D辑:地球科学), 1999(S1): 63–69.
[2] 李培基, 米德生. 中国积雪的分布. 冰川冻土, 1983(04): 9–18.
[3] 施雅风, 程国栋. 冰冻圈与全球变化. 中国科学院院刊, 1991,6(4): 287–291.
[4] 程国栋. 中国冰川学和冻土学研究40年进展和展望. 冰川冻土, 1998(03): 21–34.
[5] 杨针娘. 我国冰川水文三十年来的研究. 冰川冻土, 1988(03): 256–261.
[6] Shi J C, Dozier J. Estimation of snow water equivalence using SIR-C/X-SAR, part I: Inferring snow density and subsurface properties. IEEE Transactions on Geoscience and Remote Sensing, 2000,38(6): 2465–2474.
[7] Schaper J, Martinec J, Seidel K. Distributed mapping of snow and glaciers for improved runoff modelling. HYDROLOGICAL PROCESSES, 1999,13(12-13): 2023–2031.
[8] Frei A, Tedesco M, Lee S, et al. A review of global satellite-derived snow products. Advances in Space Research, 2012,50(8): 1007–1029.
[9] 李三妹, 闫华, 刘诚. FY-2C积雪判识方法研究. 遥感学报, 2007(03): 406–413.
[10] Dietz A J, Kuenzer C, Gessner U, et al. Remote sensing of snow – a review of available methods. International Journal of Remote Sensing, 2012,33(13): 4094–4134.
[11] 曾群柱, 曹梅盛, 冯学智等. 我国西北若干种冰雪及水体反射光谱特性的研究. 中国科学B辑, 1984(4): 370–377.
[12] 房世峰, 裴欢, 刘志辉. 新疆天山北坡典型研究区融雪期地物光谱特征分析. 光谱学与光谱分析, 2010(5): 1301–1304.
[13] 曾群柱. 我国冰雪遥感回顾与展望. 冰川冻土, 1988(03): 352–355.
[14] 曹梅盛, 冯学智, 金德洪. 积雪的若干光谱反射特征. 科学通报, 1982(20): 1259–1261.
[15] 曾群柱, 曹梅盛, 冯学智等. 我国西北若干种冰、雪及水体反射光谱特性的研究. 中国科学(B辑 化学 生物学 农学 医学 地学), 1984(04): 370–377.
[16] 曹梅盛, 李培基. 乌鲁木齐市郊冬季干积雪光谱反照率的若干特征. 干旱区地理, 1991(01): 69–73.
[17] 袁国映. 中国新疆玛纳斯河流域农业生态环境资源保护与合理利用. 干旱区资源与环境, 1993(Z1): 463–465.
[18] 冯学智, 李文君, 史正涛等. 卫星雪盖监测与玛纳斯河融雪径流模拟. 遥感技术与应用, 2000,15(01): 18–21.
[19] 雷小春, 宋开山, 杜嘉等. 雪中污染物对积雪光谱的影响研究. 中国科学院研究生院学报, 2011(05): 611–616.
[20] 曹梅盛, 冯学智, 金德洪. 积雪若干光谱反射特征的初步研究. 冰川冻土, 1984(03): 15–26.
[21] 李弘毅, 王建, 郝晓华. 祁连山区风吹雪对积雪质能过程的影响. 冰川冻土, 2012,34(5): 1084–1090.
[22] 王中隆, 白重瑗, 陈元. 天山地区风雪流运动特征及其预防研究. 1982(37): 51–64.
[23] 曹梅盛, 李新, 陈贤章等. 冰冻圈遥感[M]. 北京: 科学出版社, 2006, 27–28
[24] Aoki T, Hori M, Motoyoshi H, et al. ADEOS-II/GLI snow/ice products — Part II: Validation results using GLI and MODIS data[J]. Remote Sensing of Environment, 2007, 111(2-3): 274-290.

相似文献/References:

备注/Memo

备注/Memo:
国家自然科学基金项目(41271353),国家高分辨率对地观测系统重大专项项目(95-Y40B02-9001-13/15-04)
更新日期/Last Update: 2015-09-09