|本期目录/Table of Contents|

[1]谢顺平*,都金康,冯学智,等.融雪径流模型参数渐进式优化率定方法[J].南京大学学报(自然科学),2015,51(5):1005-1013.[doi:10.13232/j.cnki.jnju.2015.011]
 Xie Shunping *,Du Jinkang,Feng Xuezhi,et al.Approach of progressive optimization calibration for Snowmelt-Runoff Model [J].Journal of Nanjing University(Natural Sciences),2015,51(5):1005-1013.[doi:10.13232/j.cnki.jnju.2015.011]
点击复制

融雪径流模型参数渐进式优化率定方法()
     

《南京大学学报(自然科学)》[ISSN:0469-5097/CN:32-1169/N]

卷:
51
期数:
2015年第5期
页码:
1005-1013
栏目:
出版日期:
2015-10-01

文章信息/Info

Title:
Approach of progressive optimization calibration for
Snowmelt-Runoff Model
作者:
谢顺平123*都金康123冯学智123李智广1
(1.南京大学地理信息科学系,南京, 2. 江苏省地理信息技术重点实验室,南京大学,南京, 3. 中国南海研究协同创新中心,南京210023)
Author(s):
Xie Shunping 123* Du Jinkang 123Feng Xuezhi4 Li Zhiguang 123
(1. Department of Geographic and Oceanographic Sciences; 2. Jiangsu Provincial Key Laboratory of Geographic Information Science and Technology; 3. Collaborative Innovation Center of South China Sea Studies, Nanjing 210023)
关键词:
融雪径流模型 敏感参数参数离散化多目标优化渐进式参数率定
Keywords:
Snowmelt Runoff Model sensitive parameters parameter discretization multi-objective optimization progressive calibration
分类号:
-
DOI:
10.13232/j.cnki.jnju.2015.011
文献标志码:
-
摘要:
融雪径流模型(SRM)是一种概念性和半分布式模型,其参数在一定程度上反应了流域对融雪的径流响应内在机制。提出了一种融雪径流模型离散化参数的渐进式优化率定方法,以新疆玛纳斯河流域为实验区,开展SRM模型参数离散化分析及其优化研究。根据模型结构剖析,确定融雪径流系数和降雨径流系数为两个待率定的敏感参数,分析了月、半月、10天和5天等不同离散尺度模型参数表征融雪径流响应时变机制的特性,对旬离散的模型参数,采用不同目标函数及优化方法分别对2001?2012共12年融雪期逐日的融雪径流过程进行模拟率参,精度评价表明渐进式优化率定方法优于分时段优化率定方法。最后以2001?2008年的融雪期作为率参期,以2009?2012年作为检验期,分别面向三个目标对模型参数进行全局优化率定,验证模拟的平均效率系数达到0.87,表明本文提出的融雪径流模型参数率定方法是有效的,经优化的模型可应用于融雪径流预测。
Abstract:
Snowmelt Runoff Model(SRM) is a concept and semi-distributed hydrological Model and its primary parameters can express the internal response mechanism of catchment runoff to snowmelt. In this paper, we proposed a progressive calibration approach for discretized parameters optimization of SRM which is applied to simulate the snowmelt-runoff process of the Manas River basin in Xinjiang, China. The snowmelt-runoff coefficient and rainfall-runoff coefficient are determined as the two sensitive parameters to be calibrated based on the model structure parsing, and it is analyzed that the time-varying characteristic of catchment snowmelt-runoff response expressed by the model parameters which are discretized to the multiple time scale of month, half month, ten days and five days. The different object functions and optimization methods are used to calibrate the year model parameters discretized ten days scale by simulating the snowmelt-runoff process during snowmelt period from 2001 to 2012. The simulation accuracy evaluation shows that the progressive calibration method is better than the discrete time segment calibration method. Finally, oriented three objectives, the model parameters are optimized with 2001-2008 as calibration period and 2009-2012 as validation period, the results of verification simulations show that the average of efficiency coefficient is 0.87, the proposed calibration method for SRM parameters optimization are proved to be effective and the optimized model can be used to predict snowmelt-runoff process

参考文献/References:

[1]Melloh R. A synopsis and comparison of selected snowmelt algorithms. CRREL Report, 99?8, 1999: 12-13. http: / / www. crrel.usace. army. mil.
[2] 张一驰,李宝林,包安明,周成虎,陈曦,张学仁. 开都河流域融雪径流模拟研究. 中国科学D辑.地球科学, 2006, 36 (增刊Ⅱ): 24~32.
[3] 冯学智, 李文君, 史正涛. 卫星雪盖监测与玛纳斯河融雪径流模拟. 遥感技术与应用, 2000, 15(1): 18?21.
[4] 王建,李硕.气候变化对中国内陆干旱区山区融雪径流的影响. 中国科学D辑.地球科学, 2005, 35 (7): 664~670.
[5] 马虹,程国栋. SRM融雪径流模型在西天山巩乃斯河流域的应用实验. 科学通报, 2003, 48(19): 2088?2093.
[6] Rango A. The response of areal snow cover to climate change in a snowmelt runoff model. Annals of Glaciology, 1997, 25: 232?236.
[7] Seidel K, Ehrler C, Martinec J. Effects of climate change on water resource and runoff in an alpine basin. Hydrological Processes, 1998, 12(10): 1659?1669.
[8] 李致家, 周轶, 哈布.哈其.新安江模型参数全局优化研究. 河海大学学报(自然科学版), 2004,32(4):376?379.
[9] 宋星原, 舒全英, 王海波, 廖为民. SCE-UA、遗传算法和单纯形优化算法的应用. 武汉大学学报(工学版), 2009,42(1):6?9.
[10] 马海波,董增川,张文明等.SCE-UA算法在TOPMODEL参数优化中的应用. 河海大学学报(自然科学版),2006, 34( 4) :361?365.
[11] 陆桂华, 郦建强, 杨晓华. 水文模型参数优选遗传算法的应用. 水利学报, 2004,35 ( 2) : 50?56.
[12] 张文明, 董增川, 朱成涛等. 基于粒子群算法的水文模型参数多目标优化研究. 水利学报, 2008, 39(5):528?534.
[13] Li X, Weller D E, Jordan T E. Watershed model calibration using multi-objective optimization and multi-site averaging. Journal of Hydrology, 2010,380:277?288.
[14] Moussu F, Oudin L, Plagnes V, et.al. A multi-objective calibration framework for rainfall–discharge models applied to karst systems. Journal of Hydrology, 2011,400:364?376.
[15] Guo J , Zhou J Z, Lu J, et.al. Multi-objective optimization of empirical hydrological model for streamflow prediction. Journal of Hydrology, 2014, 511: 242?253.
[16] 郭俊,周建中,周超,王光谦,张勇传.概念性流域水文模型参数多目标优化率定. 水科学进展, 2012,23(4):447?456.
[17] 李弘毅, 王建. SRM融雪径流模型在黑河流域上游的模拟研究. 冰川冻土, 2008,30(5):769?775.
[18] Kult J, Choi W, Choi J. Sensitivity of the Snowmelt Runoff Model to snow covered area and temperature inputs. Applied Geography,2014,55: 30?38.
[19] 芮孝芳, 刘方贵, 邢贞相. 水文学的发展及其所面临的若干前沿科学问题. 水利水电科技进展,2007, 27(1):75?79.
[20] 宁理科, 刘海隆, 包安明.SRM模型的不确定性分析. 石河子大学学报(自然科学版), 2012,30(6):755?760.
[21] Martinec J,Rango A,Roberts R.Snowmelt Runoff Model(SRM) User’s Manual. Updated Edition 2005,WinSRM1.10. USDA Jornada Experimental Range, New Mexico State University, Las Cruces, U.S.A.
[22] 黄慰军, 黄镇, 崔彩霞等.新疆雪密度时空分布及其影响特征研究. 冰川冻土, 2007, 29(1):66?72.
[23] 杨大庆,张寅生,张志忠.乌鲁木齐河源雪密度观测研究.地理学报,1992,47(3):260?266.
[24] 王娟,姜卉芳,穆振侠. 高寒山区气温垂直分布的估测方法研究—以玛纳斯河为例. 水资源与水工程学报, 2011,22(3):44~47.

相似文献/References:

备注/Memo

备注/Memo:
国家高分辨率对地观测系统重大专项(95Y40B02900113/1504) , 国家自然科学基金(41371044)
更新日期/Last Update: 2015-09-09