|本期目录/Table of Contents|

[1]贺广均,冯学智*,肖鹏峰,等.玛纳斯河流域山区积雪的C波段SAR图像表征[J].南京大学学报(自然科学),2015,51(5):955-965.[doi:10.13232/j.cnki.jnju.2015.006]
 He Guangjun,Feng Xuezhi,Xiao Pengfeng,et al.Characterization of C band SAR image for snow in mountainous areas of Manasi River Basin[J].Journal of Nanjing University(Natural Sciences),2015,51(5):955-965.[doi:10.13232/j.cnki.jnju.2015.006]
点击复制

玛纳斯河流域山区积雪的C波段SAR图像表征()
     

《南京大学学报(自然科学)》[ISSN:0469-5097/CN:32-1169/N]

卷:
51
期数:
2015年第5期
页码:
955-965
栏目:
出版日期:
2015-10-01

文章信息/Info

Title:
Characterization of C band SAR image for snow in mountainous areas of Manasi River Basin
作者:
贺广均1234 冯学智123* 肖鹏峰123 耶楠123汪左123 陈妮123李敏123
(1. 江苏省地理信息技术重点实验室,南京大学,南京,210023; 2. 卫星测绘技术与应用国家测绘地理信息局重点实验室,南京大学,南京,210023; 3. 南京大学地理信息科学系,南京,210023; 4.天地一体化信息技术国家重点实验室,航天恒星科技有限公司,北京,100086)
Author(s):
He Guangjun1234 Feng Xuezhi123 Xiao Pengfeng123 Ye Nan123Wang Zuo123 Chen Ni123 Li Min12
(1. Jiangsu Provincial Key Laboratory of Geographic Information Science and Technology, Nanjing University; 2. Key Laboratory for Satellite Mapping Technology and Applications of State Administration of Surveying, Mapping and Geoinformation of China, Nanjing University; 3. Department of Geographic Information Science, Nanjing University; 4.State Key Laboratory of Space-Ground Integrated Information Technology,Company Limited,Beijing)
关键词:
玛纳斯河流域、山区积雪、干涉相干系数、后向散射系数、SAR图像表征
Keywords:
Manasi River Basin snow in mountainous areas interferometric coherence backscattering coefficient characterization of SAR image
分类号:
-
DOI:
10.13232/j.cnki.jnju.2015.006
文献标志码:
-
摘要:
首先利用光学遥感数据识别新疆玛纳斯河流域山区积雪时空分布信息,然后利用C波段合成孔径雷达图像分析非积雪期、积雪期、融雪期的积雪和无积雪覆盖地表在不同下垫面类型、不同局部入射角、不同极化条件下的后向散射系数差异、后向散射系数变化情况和干涉相干性差异,结果表明:(1)在积雪期,积雪与无积雪覆盖地表后向散射系数相近,在融雪期,积雪覆盖地表后向散射系数比无积雪覆盖地表低5~10 dB;(2)从非积雪期到积雪期,HH、VV极化的后向散射系数变化较小,HV、VH极化的后向散射系数降低2~4 dB;(3)从积雪期到融雪期,积雪覆盖地表HH、VV极化的后向散射系数降低约2 dB,HV、VH极化的后向散射系数变化不明显,无积雪覆盖地表HH、HV、VH、VV极化的后向散射系数增加2~3 dB;(4)从非积雪期到融雪期,积雪覆盖地表HH、HV、VH、VV极化的后向散射系数降低约2 dB,无积雪覆盖地表HH、VV极化的后向散射系数增加1~2 dB,HV、VH极化的后向散射系数变化不明显;(5)HH、VV极化方式下积雪覆盖地表相干系数明显低于无积雪覆盖地表。SAR图像表征分析结果对积雪及其物理状态的雷达识别研究提供科学依据。
Abstract:
The optical remote sensing data is used to discriminate snow cover information in mountainous areas of Manasi River Basin in this study. Then by using C band synthetic aperture radar (SAR) images acquired in snow-free, snow-accumulation and snow-melt period, the backscattering coefficient, backscattering coefficient variations, interferometric coherence are analyzed combining with underlying surface type, local incidence angle and polarization state. Analysis results indicate that: (i) There is no backscattering coefficient difference between snow-free areas and snow-covered areas in snow-accumulation period. The backscatteri1ng coefficient of snow-covered areas is 5~10 dB smaller than snow-free areas in snow-melt period. (ii) From snow-free period to snow-accumulation period, the backscattering coefficient in HH and VV polarization show little variation and 2~4 dB reduced in HV and VH polarization. (iii) From snow-accumulation period to snow-melt period, the backscattering coefficient of snow-covered areas reduced about 2 dB in HH and VV polarization. However, the variation for HV and VH polarization are not distinct. (iv) From snow-free period to snow-melt period, the backscattering coefficient of snow-covered areas reduced about 2 dB in HH, HV, VH, and VV polarization, whereas backscattering coefficient of snow-free areas increased 1~2 dB in HH and VV polarization. The variation for HV and VH polarization are not distinct. (v) The interferometric coherence of snow-covered areas is significantly smaller than snow-free areas in HH and VV polarizations. The analysis results about characterization of SAR image provide foundations for snow cover extraction and snow physical state identification by SAR data.

参考文献/References:

[1] 冯学智, 李文君, 柏延臣. 雪盖卫星遥感信息的提取方法探讨. 中国图象图形学报,2000,5A(10):836-839.
[2] Shi J C, Hensley S, Dozier J. Mapping snow cover with repeat pass Synthetic Aperture Radar. IEEE International Proceedings in Geoscience and Remote Sensing Symposium. 1997, 2, 628-630.
[3] Hall D K, Riggs G A. Accuracy assessment of the MODIS snow products. Hydrological Processes, 2007, 21(12):1534-1547.
[4] Shi J C, Du Y, Du J Y, et al. Progresses on microwave remote sensing of land surface parameters. Science China Earth Science, 2012, 55:1052-1078.
[5] Ulaby F T, Moore R K, Fung A K. Microwave Remote Sensing: Active and Passive. Volume 2: Radar Remote Sensing and Surface Scattering and Emission Theory. Addison: Wesley Publishing Company, 1982, 322-329.
[6] Ulaby F T, Moore R K, Fung A K. Microwave Remote Sensing: Active and Passive. Volume 3: From Theory to Application. Addison: Wesley Publishing Company, 1982, 385-388.
[7] 金亚秋. 电磁散射和热辐射的遥感理论. 北京:科学出版社,1993, 292-298.
[8] Koskinen J, Mets?m?ki S, Grandell J, et al. Snow monitoring using radar and optical satellite data. Remote Sensing of Environment. 1999, 69(1): 16-29.
[9] Nagler T, Rott H. Retrieval of wet snow by means of multitemporal SAR data. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(2):754-765.
[10] Notarnicola C, Ratti R, et al. Seasonal Snow Cover Mapping in Alpine Areas Through Time Series of COSMO-SkyMed Images, IEEE Geoscience and Romote Sensing Letters, 2013, 10(4):716-720.
[11] Shi J C, Dozier J. Mapping seasonal snow with SIR-C、X-SAR in mountainous areas. Remote Sensing of Environment. 1997, 59(2):294-307.
[12] He G J, Xiao P F, Feng X Z, et al. Extracting Snow Cover in Mountain Areas Based on SAR and Optical Data[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(5):1136-1140.
[13] Chokmani K, Bernier M, Gauthier Y. Uncertainty analysis of EQeau, a remote sensing based model for snow water equivalent estimation. International Journal of Remote Sensing, 2006, 27(19): 4337-4346.
[14] Bernier M, Fortin J P. The potential of times series of C-band SAR data to monitor dry and shallow snow cover. IEEE Transactions on Geoscience and Remote Sensing, 1998, 36(1): 226-243.
[15] Shi J C, Dozier J. Estimation of snow water equivalence using SIR-C/X-SAR, part I: inferring snow density and subsurface properties. IEEE Transactions on Geoscience and Remote Sensing. 2000, 38(6): 2465-2474.
[16] Shi J, Dozier J . Estimation of snow water equivalence using SIR-C/X-SAR, part II: inferring snow depth and particle size. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(6): 2475-2488.
[17] Bernier M, Fortin J P, Gauthier Y, et al. Determination of snow water equivalent using RADARSAT SAR data in eastern Canada. Hydrological Processes, 1999, 13(18): 3041-3051.
[18] Deeb E J, Forster R R, Kane D L. Monitoring snowpack evolution using interferometric synthetic aperture radar on the North Slope of Alaska, USA. International Journal of Remote Sensing, 2011, 32(14): 3985-4003.
[19] Guneriussen T, Hogda K A, Johnsen H, et al. InSAR for snow water equivalent of dry snow. IEEE Transactions on Geoscience and Remote Sensing. 2001, 39(10): 2101-2108.
[20] 李晖. 新疆玛纳斯河流域典型区雪深的InSAR遥感反演研究. 博士学位论文. 南京: 南京大学, 2012.
[21] 林金堂. 玛纳斯河流域山区卫星雪盖衰退过程研究. 博士学位论文. 南京: 南京大学, 2012.
[22] Hall D K, Riggs G A, Salomonson V V. Development of methods for mapping global snow cover using moderate resolution imaging spectroradiometer data[J]. Remote Sensing of Environment, 1995, 54(2): 127-140.

相似文献/References:

备注/Memo

备注/Memo:
国家自然科学基金项目(41271353),国家高分辨率对地观测系统重大专项项目(95-Y40B02-9001-13/15-04)
更新日期/Last Update: 2015-09-09