|本期目录/Table of Contents|

[1]东 梅*,王 界,赵 冬,等.无锡夏季颗粒污染物空间特征分析 [J].南京大学学报(自然科学),2015,51(3):490.[doi:10.13232/j.cnki.jnju.2015.03.005]
 Dong Mei*,Wang Jie,Zhao Dong,et al.The study of vertical distribution of particulate matter in summer, Wuxi City[J].Journal of Nanjing University(Natural Sciences),2015,51(3):490.[doi:10.13232/j.cnki.jnju.2015.03.005]
点击复制

无锡夏季颗粒污染物空间特征分析
()
     

《南京大学学报(自然科学)》[ISSN:0469-5097/CN:32-1169/N]

卷:
51
期数:
2015年第3期
页码:
490
栏目:
出版日期:
2015-06-01

文章信息/Info

Title:
The study of vertical distribution of particulate matter in summer, Wuxi City
作者:
东 梅1*王 界2赵 冬3陈 诚4
(1.无锡市环境监测中心站,无锡,214121;2.无锡中科光电技术有限公司,无锡,214135; 3.无锡市环境应急中心,无锡,214121;4.江苏省环境监测中心,南京,210036)
Author(s):
Dong Mei1* Wang Jie2 Zhao Dong3 Chen Cheng4
(1. Wuxi Environmental Monitoring Centre, Wuxi, 214121, China;2. Wuxi CAS Photonics Co., Ltd., Wuxi, 214135, China; 3. Wuxi Environmental Emergency Centre, Wuxi, 214121, China; 4. Jiangsu Environmental Monitoring Centre, Nanjing, 210036, China)
关键词:
颗粒物监测激光雷达消光系数退偏振度外来输送垂直分布
Keywords:
particulate LiDAR extinction coefficient depolarization coefficient over-boundary transport vertical distribution
分类号:
-
DOI:
10.13232/j.cnki.jnju.2015.03.005
文献标志码:
-
摘要:
针对无锡地区2013年8月13日至31日期间的晴朗、降雨、污染过程,利用地基遥感设备大气颗粒物监测激光雷达对气溶胶光学特性的时空演变特征进行监测。结果表明晴朗天气下污染物早晚分布较少、中午集聚较多的特点,并且午间污染物的扩散高度可以达到1.5 km以上。晴朗天气下气流的水平、垂直运动增强有利于污染的扩散,这也是污染程度较轻和能见度超过20 km的重要原因;降雨过程中,雨云层分布高度在500 m以下,雨云中的水滴产生的消光系数大于2 km-1,能见度不足10 km,降雨过程中空气对流增强,风速增大,加上颗粒物的湿沉降作用减轻污染程度;污染时段,由于静稳天气,使得污染物扩散不利,颗粒物主要集中在近地面1 km以内,颗粒物产生的消光系数较长时段超过0.5 km-1。激光雷达的探测结果显示,8月30日外来污染物的输送和局地污染物的复合使得污染程度加重。通过后向轨迹模式分析发现,该污染团可能来自站点的西北方向。近地面PM2.5的质量浓度在晴天和降雨过程中均不超过50 ?g/m3,但是在污染过程中,PM2.5峰值接近160 ?g/m3。近地面碳黑浓度的变化趋势PM2.5一致,尤其在污染过程中,碳黑的质量浓度达到9?g/m3。结合近地面观测与颗粒物激光雷达的地基遥感监测结果,能够对无锡地区颗粒物的垂直分布进行初步解析。
Abstract:
A continuous observation to study the vertical distribution of particulate matter has been conducted at Wuxi city during August 13th to 31st 2013. In this experiment, the ground-based particulate LiDAR (Light Detection and Ranging) system was used for the retrieval the aerosol optical properties (extinction coefficients, depolarization coefficients) varying along with height in clear days, rainy days and polluted days, e.g. haze pollution. The results showed that particulate matter accumulated rather rare in the early morning and in the evening for clear days, while it was rich at noon. The top of particulate matter layer extended to 1.5 km due to the strong convection of airflow in vertical and horizontal direction. In this case, the visibility range reached over 20 km. LiDAR detection also revealed that the rainy clouds covered at 500m off ground level in rainy interval. The extinction coefficients exceeded 2 km-1 due to the large volume of water drops. We found that the visibility was no more than 10 km in raining duration. The fast airflow movement and strong wind combining with wet deposition of atmosphere particles may contribute for the less pollution in rainy days. In polluted episodes, the calm condition was not good for particulate matter dispersing in vertical and horizontal level; therefore, most of the aerosol was trapped in 1 km from ground level. The maximum in the extinction coefficients profile of aerosol always exceed 0.5 km-1 from LiDAR detection. A polluted air mass transferred over-boundary made local air quality worse on August 30th. Model simulation results from HYSPLIT estimated the possible origin of this air mass was from the Northwest of monitoring station. PM2.5 concentration was below 50 ?g/m3 in clear days and rainy days, but the peak value of PM2.5 in haze pollution was closed to 160 ?g/m3. A better consistence between PM2.5 and black carbon (BC) has been shown in polluted days than the other two cases. The climax of BC was approaching 9?g/m3 in polluted period. The exact observations of PM2.5 and BC perfectly supported the detection of LiDAR and together constructed a whole picture of particulate matter vertical distribution for Wuxi city.

参考文献/References:

[1] 贺泓,王新明,王跃思等.大气灰霾追因与控制.中国科学院院刊, 2013, 28(3): 344~352.
[2] 姜 杰,查 勇,袁 杰等.遥感技术在灰霾监测中的应用综述.环境监测管理与技术, 2011, 23(2): 15~18.
[3] 毛敏娟,蒋维楣,吴晓庆等.气象激光雷达的城市边界层探测.环境科学学, 2006, 26(10): 1723~1728.
[4] 王珍珠,李 炬,钟志庆等.激光雷达探测北京城区夏季大气边界层.应用光学, 2008, 29(1): 96~100.
[5] 王治华. 大气消光系数反演方法参数优化及成都地区大气边界层特性研究.硕士学位论文. 成都:四川大学, 2006.
[6] 贺千山,毛节泰.北京城市大气混合层与气溶胶垂直分布观测研究.气象学报, 2005, 63(3): 374~384.
[7] 刘 诚,明 海,王 沛等.西藏那曲与北京郊区对流层气溶胶的微脉冲激光雷达测量.光子学报, 2006, 35(9): 1435~1439.
[8] 董云升,刘文清,陆亦怀等.2008年北京奥运期间大气颗粒物激光雷达观测研究.大气与环境光学学报, 2009, 4(5): 368~375.
[9] 潘 鹄,耿福海,陈勇航等.利用微脉冲激光雷达分析上海地区一次灰霾过程.环境科学学报, 2010, 30(11): 2164~2173.
[10] 陈欢欢,吴 兑,谭浩波等.珠江三角洲2001-2008年灰霾天气过程特征分析.热带气象学报, 2010, 26(2): 147~155.
[11] 李 菲,吴 兑,谭浩波等.广州地区旱季一次典型灰霾过程的特征及成因分析.热带气象学报, 2012, 28(1): 113~122.
[12] 吕 阳,李正强,尹鹏飞等.结合地基激光雷达和太阳辐射计的气溶胶垂直分布观测.遥感学报, 2013, 17(4): 1008~1020.
[13] 张婉春,张 莹,吕 阳等.利用激光雷达探测灰霾天气大气边界层高度.遥感学报, 2013, 17(4): 981~992.
[14] 李正强,许 华,张 莹等.北京区域2013严重灰霾污染的主被动遥感监测.遥感学报, 2013, 17(4): 924~928.
[15] 毛敏娟,刘厚通,徐宏辉等.多元观测资料融合应用的灰霾天气关键成因研究.环境科学学报, 2013, 33(3): 806~813.
[16] Fernald F G. Analysis of atmospheric lidar observations- Some comments. Applied optics, 1984, 23(5): 652-653.
[17] 解淑艳,王晓彦,吴迓名等.环境空气中PM2.5自动监测方法比较及应用.中国环境监测, 2013, 2: 150~155.
[18] 黄祖照,王 杰,刘建国等.广州城区大气细颗粒物粒谱分布特征分析.中国环境科学, 2012, 32(7): 1177~1181.
[19] Yang F, Tan J, Zhao Q, et al. Characteristics of PM2.5 speciation in representative megacities and across China[J]. Atmospheric Chemistry and Physics, 2011, 11(11): 5207~5219.

相似文献/References:

备注/Memo

备注/Memo:
国家重大科学仪器研发与应用(2012YQ060147),江苏省创新资金(BC2012049)
更新日期/Last Update: 2015-04-23