|本期目录/Table of Contents|

[1]吴 琼,柏业超*,张兴敢.基于贝叶斯压缩感知的宽带雷达回波处理[J].南京大学学报(自然科学),2015,51(4):665-672.[doi:10.13232/j.cnki.jnju.2015.04.002]
 Wu Qiong,Bai Yechao,Zhang Xinggan.Echo processing of broad-band radar based on Bayesian compressive sensing[J].Journal of Nanjing University(Natural Sciences),2015,51(4):665-672.[doi:10.13232/j.cnki.jnju.2015.04.002]
点击复制

基于贝叶斯压缩感知的宽带雷达回波处理()
     

《南京大学学报(自然科学)》[ISSN:0469-5097/CN:32-1169/N]

卷:
51
期数:
2015年第4期
页码:
665-672
栏目:
出版日期:
2015-08-01

文章信息/Info

Title:
Echo processing of broad-band radar based on Bayesian compressive sensing
作者:
吴 琼柏业超*张兴敢
(南京大学电子科学与工程学院,江苏 南京 210023)
Author(s):
Wu Qiong Bai Yechao Zhang Xinggan
(School of Electronic Science and Engineering, Nanjing University, Nanjing 210023, China)
关键词:
贝叶斯压缩感知理论Chirp回波信号相关向量机自适应观测
Keywords:
Bayesian compressive sensing (BCS) theory Chirp signal relevance vector machine (RVM) adaptive observation
分类号:
-
DOI:
10.13232/j.cnki.jnju.2015.04.002
文献标志码:
-
摘要:
宽带雷达回波处理中存在采样速率高、存储压力大、信号处理时间长的问题。压缩感知理论(Compressive Sensing,CS)利用以远低于奈奎斯特速率采样的样本可实现信号高概率重构,有效地降低了数据采样率,缓解了宽带雷达数字信号处理的压力。该文利用贝叶斯压缩感知(Bayesian Compressive Sensing,BCS),实现对雷达回波信号的压缩采样,减小数据量的同时能够充分恢复信号的目标信息。BCS理论基于相关向量机(Relevance Vector Machine,RVM)原理,采用快速边际似然算法提高了目标信息的重建效率。仿真实验表明,相比于普通压缩感知,贝叶斯压缩感知对低维回波采样样本的重构精度更高,重构信号时域峰值相对误差降低10%以上,并且在相同误差水平下,对信噪比的要求降低5 dB,具有更强的抗噪声能力。基于贝叶斯方法的回波信号处理可以实现对目标回波的自适应观测采样,进一步降低了回波信号的采样率。
Abstract:
High sampling rate, huge storage pressure and long processing time are the important problems in the processing of broadband radar echo. Compressive sensing (CS) theory makes it possible to realize signal reconstruction accurately by using few measurement data with much smaller Nyquist sampling rate, which eases huge memory pressure in the broadband radar signal processing. This paper realizes the compressive sampling of radar echoes under the Bayesian compressive sensing (BCS) to reduce the data amount with the full target information restored. Based on the relevance vector machine (RVM), the fast marginal likelihood maximization algorithm improves the efficiency of target signal reconstruction. Simulation experiments show that when compared to CS, BCS reconstructs target information more precisely with relative error in time domain reduced by 10% and better noise resisting ability with 5 dB reduction of signal-to-noise ratio. Echo signal processing based on bayesian method can realize the adaptive observation of target echo, which further reduces the echo signal sampling rate

参考文献/References:

[1] 文树梁,袁起,秦忠宇. 宽带线性调频信号Stretch处理误差获取与补偿.系统工程与电子技术, 2005,27(1):36-39.
[2] Candes E J,Romberg J,Tao T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. on Information Theory,2006,52(2):489-509.
[3] Candes E J,Tao T. Near-optimal signal recovery from random projections: universal encoding strategies. IEEE Trans. on Information Theory,2006,52(12):5406-5425.
[4] Donoho D L. Compressed sensing. IEEE Trans. on Information Theory,2006,52(4): 1289-1306.
[5] 谢志鹏. 基于前向后向算子分裂的稀疏信号重构[J]. 南京大学学报 (自然科学版), 2012, 48(4): 475-481.
[6] Baraniuk R G,Steeghs P. Compressive radar imaging. IEEE Radar Conference,
Waltham,Massachusetts,April 2007:128-133.
[7] 高磊,宿绍莹,陈曾平. 宽带雷达Chirp回波的正交稀疏表示及其在压缩感知中的应用. 电子与信息学报,2011,33(11):2720-2726.
[8] Ahmed S K,Ma J W. Applications of compressed sensing for SAR moving-target velocity estimation and image compression. IEEE Trans. on Instrumentation and Measurement,2011,60(8),2848-2860.
[9] 刘记红,徐少坤,高勋章等. 基于随机卷积的压缩感知雷达成像. 系统工程与电子技术,2011,33(7):1485-1490.
[10] Chen S,Donoho D L,Saunders M A. Atomic decomposition by basis pursuit. Society for Industrial and Applied Mathematics(SIAM) Review,2006,43(1):129-159.
[11] Tropp J A,Gilbert A C. Signal recovery from partial information via orthogonal matching pursuit. IEEE Trans. on Information Theory,2007,53(12):4655-4666.
[12] Ji S H,Xue Y,Carin L. Bayesian compressive sensing. IEEE Trans. on Signal Processing,2008,56(6):2346-2356.
[13] Babacan S D,Molina R,Katsaggelos A K. Bayesian compressive sensing using Laplace priors. IEEE Trans. on Image Processing,2010,19(1):53-63.
[14] Tipping M E. Sparse Bayesian learning and the relevance vector machine. Journal of Machine Learning Research,2001,1:211-244.
[15] Tipping M E,Faul A C. Analysis of sparse Bayesian learning. Advances in Neural Information Processing Systems 14,2002,383-389.
[16] Tipping M E,Faul A C. Fast marginal likelihood maximization for sparse Bayesian models//Proc. of the Ninth International Workshop on Artificial Intelligence and Statistics,2003,1(3).
[17] Mann S,Haykin S. The chirplet transform: physical considerations. IEEE Trans. on Signal
Processing,1995,43(11):2745-2761.

相似文献/References:

备注/Memo

备注/Memo:
毫米波国家重点实验室开放课题(K201514)
更新日期/Last Update: 2015-07-07