|本期目录/Table of Contents|

[1]陈梅英,欧忠辉,等.相场法模拟冰晶生长的参数优化[J].南京大学学报(自然科学),2014,50(6):873-882.[doi:10.13232/j.cnki.jnju.2014.06.016]
 Chen Meiying,Ou Zhonghui,Zhuo Yanyun,et al.Optimization of correlative parameters in numerical simulation of ice crystal growth by phase-field[J].Journal of Nanjing University(Natural Sciences),2014,50(6):873-882.[doi:10.13232/j.cnki.jnju.2014.06.016]
点击复制

相场法模拟冰晶生长的参数优化()
     

《南京大学学报(自然科学)》[ISSN:0469-5097/CN:32-1169/N]

卷:
50
期数:
2014年第6期
页码:
873-882
栏目:
出版日期:
2014-11-30

文章信息/Info

Title:
Optimization of correlative parameters in numerical simulation of ice crystal growth by phase-field
作者:
陈梅英 1 2 欧忠辉 3 卓艳云 2 陈锦权 2 林河通 2 冯 力 4*
( 1. 福建农林大学管理学院旅游学院, 福州, 3 5 0 0 0 2 ; 2. 福建农林大学食品科学学院, 福州, 3 5 0 0 0 2 ;
3. 福建师范大学数学与计算机科学学院, 福州, 3 5 0 1 0 8 ; 4. 兰州理工大学材料科学与工程学院, 兰州, 7 3 0 0 5 0 )
Author(s):
Chen Meiying12Ou Zhonghui3Zhuo Yanyun2Chen Jinquan2Lin Hetong2Feng Li4*
(1. Management College and Tourism College, Fujian Agriculture and Forestry University, Fuzhou,350002, China ;2. College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China;
3. School of Mathematics and Computer Science, Fujian Normal University, Fuzhou, 350108, China; 4. College of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, China)
关键词:
相场法 冰晶生长 界面厚度 各向异性 过冷度
Keywords:
 p h a s e - f i e l d c r y s t a l g r o w t h i n t e r f a c e t h i c k n e s s a n i s o t r o p i c d e g r e eo f s u p e r c o o l i n g
分类号:
-
DOI:
10.13232/j.cnki.jnju.2014.06.016
文献标志码:
-
摘要:
水溶液冻结过程生成的冰晶是低温保存中造成细胞损伤的主要原因 . 研究如何降低冰晶形成和生长过程
对细胞伤害的方法, 是低温生物研究的重要课题 . 本文采用国内外描述相变微观结构的相场模型, 将体系视为水和
溶质二元系统, 研究了界面厚度尺度、 各向异性强度和过冷度对结晶过程冰晶生长的影响 . 结果表明: 界面厚度影
响模拟结果, 为了获得可靠的计算结果, 界面厚度参数取值为 3. 0 0d x ; 各向异性系数大小对冰晶形貌有很大影响,
取值越大, 冰晶的二次分枝越发达, 且尖端速度波动的幅值越大, 各向异性系数取值范围 0. 0 1 0~0. 0 2 5 ; 过冷度明
显影响冰晶的生长和形貌, 过冷度大, 冰晶生长速度加快, 二次分枝发达, 形貌变化较大, 固相率也随之变大 . 参数
优化结果为: 界面厚度尺度等于 3. 0 0d x , 各向异性系数等于 0. 0 2 3 , 过冷度等于 2 0K 的模拟结果与低温显微镜下
观察到的冰晶生长形貌试验结果相吻合 .
Abstract:
The main cause of cell damage in aqueous solution was ice crystals generated by low temperature preservation. It is an important topic for low temperature biology research to study how to reduce the cell damage from ice crystal formation and growth in order to investigate the influence on correlative parameters such as interface thickness, anisotropic and degree of supercooling. The phase-field model theory which had been widely used in the phase transition of the microscopic structure at home and abroad was employed to stimulate the ice growth process, by regarding system as water and solute in binary system. The results showed that the interface thickness had influence on the simulation results. It should be taken a reasonable value of 3.00dx to get reliable calculation results. The anisotropic coefficient had a great influence on the crystal morphology. When it became bigger, the secondary dendritic branches of ice crystals were better-developed and the fluctuation amplitude of tip growth speed would be intensified ranging from 0.010 to 0.025. The degree of supercooling significantly affected the growth and morphology of the ice crystals. The growth speed of ice crystal would increase by the larger degree of supercooling and the secondary dendritic branches of ice crystals were better-developed, the morphology and the solid fraction would have greater change too. The conclusion of the optimization results of the interface thickness was 3.00dx, the anisotropic coefficient was 0.023 and super-cooling degree was 20k. It would validate the simulation results coincided well with the experiment.

参考文献/References:

[1] 王海燕. PVA与研究可视化DSC用于玻璃化冻存技术的实验.广州: 中山大学, 2009.
[2] 何立群,张永锋,罗大为等. 生命材料低温保护剂溶液二维降温结晶过程中的分形特征. 自然科学进展,2002, 12(11): 1167~1171.
[3] 吕福扣,刘宝林,李维杰等. 纳米低温保护剂溶液冻结和融化过程的显微研究. 低温物理学报, 2013,35 (2): 155~159.
[4] Steinbach I, Beckermann C. Three-dimensional modeling of equiaxed dendritic growth on a mesoscopic scale. Acta Mater, 1999, 47(3): 971~982.
[5] Brown S G R, Bruce N B T. Three-Dimensional simulation cellular automaton model of microstructural evolutionduring solidification. Journal of Materia Science, 1995, 30(5): 1144~1150.
[6] Ggeger J, RooszZ A. Simulation of grain coarsening in two dimensions by cellular-automaton. Acta Materialia, 2001, 49(4): 623~629.
[7] Levent B. Mathematical analysis of freeze concentration of apple Juice. Journal of Food Engineering, 1993, 19(1):95~107.
[8] 陈梅英, 陈锦权, 陈永雪. 荔枝汁冷冻浓缩冰晶生长的动力学分析和相场模拟. 中国农业大学学报, 2011, 16(2):153~157
[9] Auleda J M,Raventós M,Hernández E. Calculation method for designing a multi-plate freeze-concentrator for concentration of fruit juices. Journal of Food Engineering, 2011, 107(1): 27~35.
[10] Okawa S, Ito T, Saito A. Effect of crystal orientation on freeze concentration of solutions. International Journal of Refrigeration, 2009, 32(2): 246~252.
[11] Auleda J M, Raentos M, Sanchez J, et al. Estimation of the freezing point of concentrated fruit juices for application in freeze concentration. Journal of Food Engineering, 2011, 105(2): 289~294.
[12] Auleda J M,Raventos M,Hernandez E. Calculation method for designing a multiplate freeze-concentrator for concentration of fruit juices. Journal of Food Engineering, 2011, 107(1): 27~35.
[13] Ding H,Spelt P D M,Shu C. Diffuse interface model for incompressible two-phase flows with large density ratios. Computational Physic, 2007, 226 (2): 2078~2095.
[14] Yang Q Z,Li B Q,Ding Y C. 3D phase field modeling of electrohydrodynamic multiphase flows. International Journal of Multiphase Flow, 2013, 57(12): 1~9.
[15] Abdollahi A,Arias I. Phase-field modeling of crack propagation in piezoelectric and ferroelectric materials with different electromechanical crack conditions. Journal of the Mechanics and Physics of Solids, 2012, 60(12): 2100~2126.
[16] Marín-Rubio P,Planas G. Global attractor and omega-limit sets structure for a phase-field model of thermal alloys. Nonlinear Analysis: Real World Applications, 2012, 13(4): 1676~1691.
[17] Fan J L, Li X Z, Su Y Q, et al. Directional solidification of Ti-49 Al alloy. Applied Physics, 2011, A105: 239~248.
[18] 李方方,刘 静,乐 凯等. 细胞尺度冰晶生长行为的相场数值模拟. 低温物理学报,2008,30(2): 172~175.
[19] 陈梅英,卓艳云,欧忠辉等. 冷冻浓缩过程冰晶夹带溶质浓度分布模拟. 科学通报,2014,59(18):1776~1783.
[20] 陈梅英, 冯 力, 欧忠辉等. 基于相场法的液态食品冷冻浓缩冰晶生长数值模拟. 农业工程学报, 2014,30(3):231~237.
[21] 陈梅英, 冯 力, 欧忠辉等. 果汁等温结晶过程冰晶生长的相场法模拟. 中国农业大学学报,2013,18(6): 153~157.
[22] Kim S G,Kim W T,Suzuki T. Phase-field model for bianry alloys. Physical Review E, 1999, 60(6): 71~86.
[23] 李建国. 凝固原理. 北京:高等教育出版社,2010: 171.
[24] Chen Z, Chen C L, Hap L M. Numerical simulation of facetdendrite growth. Transactions of Nonferrous Metals Society of China, 2008, 18(4): 938~943.
[25] Warren J A, Boettinger W J. Prediction of dendritic growth and microsegregation patterns in a binary alloy using the phase-field method. Acta Metallurgica et Materialia, 1995, 43: 689~703.
[26] Barber M N, Barbieria A, Langeer J S. Predictions of dendritic growth rates in the linearized solvability theory. Physical Review A, 1989, 39: 5314~5325.
[27] 陶乐仁. 低温保护剂溶液结晶过程的显微实验研究. 工程热物理学报,2001,22(4): 481~484.

相似文献/References:

备注/Memo

备注/Memo:
国家自然科学基金(31101327,31401597),高等学校博士学科点专项科研基金博导类资助课题(20123515110016),福建省科技厅K类基金(JK2011007)
更新日期/Last Update: 2014-12-18