|本期目录/Table of Contents|

[1]沈昆**,张泽明.,Santosh M,等. 西藏拉萨地体冈底斯岩基紫苏花岗岩中的 高密度C02包裹体成因及其地质意义* [J].南京大学学报(自然科学),2012,48(3):278-294.
 Shen Kun,Zhang Ze-Ming,Santosh M,et al. Origin and geological significance of high-density CO2 fluid inclusions in Charnockites from the Gangdese batholith, Lhasa terrane,southern Tibet [J].Journal of Nanjing University(Natural Sciences),2012,48(3):278-294.





 Origin and geological significance of high-density CO2 fluid
inclusions in Charnockites from the Gangdese batholith,
Lhasa terrane,southern Tibet
 沈昆1**张泽明2.3 Santosh M4 董听2
3.中国地质大学(武汉)地质作用和矿物资源国际重点实验室,武汉,430074;4. Department of Natural
Environmental Science, Faculty of Science, Kochi University, Akebono-cho, Kochi 780一8520,Japan)
 Shen Kun1Zhang Ze-Ming 23Santosh M4Dong Xin2
 (1 .institute of Geological Sciences of Shandong, Jinan, 250013,China; 2,Institute of Geology, Chinese
Academy of Geological Sciences,Beijing 100037,China; 3. State Key Laboratory of Geological Processes
and Mineral Resources, China University of Geosciences, Wuhan 430074,China; 4. Department of Natural
Environmental Science, Faculty of Science, Kochi University, Akebono-cho, Kochi 780一8520,Japan)
 charnockitecarbonic fluid inclusion Gangdcsc batholith Lhasa terraneTibet
 产于西藏拉萨地体东南部冈底斯岩基中的紫苏花岗岩侵入体具有低水活度的矿物组合,富含CO2:流体包裹体.形成紫苏花岗岩所需要的低水活度条件主要是受到含CO2:流体带入的控制.通过对产于冈底斯岩基紫苏花岗岩中CO2:流体包裹体的岩相学观察、显微测温和激光拉曼光谱分析,确定了其组成和密度.结果表明碳质(CO2)流体包裹体是在紫苏花岗岩结晶过程中捕获的,其等容线通过了由矿物温压计估算的P-T条件(850?C,-950?C, 0. 75-1. 0GPa),随后经历了短期近等压降温作用和地
体快速降起的影响.石英中的高密度碳质流体包裹体(密度最高可达1. 1 4g/cm3;)提供了证据表明,拉萨地体麻粒岩相变质和紫苏花岗岩侵位期间有富CO2:流体的参与.富CO2:流体包裹体的产出及其形成的高温高压条件可能说明在紫苏花岗岩的形成机制与洋中脊俯冲过程中的脱水熔融和渗滤有关.
 Charnockits, occurring as intrusive rocks in the Gangdese batholith in the southeastern Lhasa terrane are characterized by the presence of dry mineral assemblage.The anhydrous conditions required for the formation of charnockites arc thought to be controlled by the lowering of water activity through the influx of CO2一bearing fluids.Through petrographic, microthermometric studies and Raman analysis of CO2一rich fluid inclusions in the charnockite samples from the Uangdese batholith,we have characterized the composition and density of the fluids during the crystallization of the charnockites. Our results indicate that the carbonic fluid inclusions were trapped during the crystallization of the charnockites and its isochores pass through the P-T conditions around 850 ?C一
950 ?C and 0. 75一1. 0 GPa as estimated by mineral thermobarometry data. High-density carbonic fluid inclusions (up to 1. 14g/cm3;)in quartz provide potential evidence for the involvement of CO2一rich fluid during granulite facics metamorphism in the Lhasa terrane. Occurrence of Co2一rich inclusions and elevated P-T conditions open up the possibility favoring the mechanism of vapour-deficient dehydration melting accompanied by CO2 infiltration to account for charnockite formation in the ocean ridge subduction process.


[1]Van den Kerkhof A M, Grantham G H. Meta- morphic charnockite in contact aureoles around intrusive enderbite from Natal,South Africa.
Contributions to Mineralogy and Petrology, 1999,137:115一132.
[2]Santosh M,Omori S. CO2 flushing; A plate tectomc perspective.Gondwana Research,2008,13,86~102.
[3]Touret J L R. Le facies granulite en Norvege meridionale. II:Les inclusion fluides. Lithos, 1971,4:423一436.
[4]Touret J L R. Fluid inclusions in high-grade metamorphic rocks. Fluid inclusions; Applica- dons to Petrology. Hollister L S, Crawford M
L. Mineralogical Association of Canada, Short Course Hand book,1981,6:182一208,Cal gary.
 [5]Touret J L R,Dietvorst P. Fluid inclusions in high-grade anatectic metamorphites. Journal of Geological Society of London,1983,140:635~649
[6]Jansen J B H,Blok R J P, Bos A,et al. Geo- thermometry and geobarometry in Rogaland and preliminary results of the Gamble area, south
Norway. Tobi A C, Touret J L R. The Deep Proterozoic Crust in the North Atlantic Prov- inces, NATO ASl Series, 0158. Rcidcl,Dor- drecht, 1985,499一516.
[7]Touret J L R,Hartel T H D. Synmetamorphic fluid inclusions in granulites. Vielzeuf D, Vidal P. Granulites and Crustal Evolution, 1990 ,397~417
[8]van den Kerkhof A M,Touret J L R,Kreulen R. Juvenile CO2 in enderbites of Tromoy near Arcndal,southern Norway; A fluid inclusion
and stable isotope study. Journal of Metamor- phic Geology, 1999,12:301一310.
[9]Coolen J J. Carbonic fluid inclusions in grams lites from Tanzama一a comparison of geobaro metric methods based on fluid density and min
eral chemistry. Chemical Geology, 1982,37 :59-77.
[10]Herms P,Schenk V. Fluid inclusions in high- pressure granulites of the Pan-African belt in Tanzania (Uluguru Mts):A record of prograde
to retrograde fluid evolution. Contributions to Mineralogy and Petrology, 1998,130: 199一212.
[11]Hansen E C, Newton R C, Jenardhan A S. Fluid inclusions in rocks from the amphibolite facics gneiss to charnockitic progression in
southern Karnataka, India; Direct evidence con- cerning the fluids of granulite metamorphism. Journal of Metamorphic Ucology, 198,2: 249一264.
[12]Hansen E C, Janardhan A S, Newton R C, et al. Arrested charnockite formation in southern India and Sri Lanka. Contributions to Mineralo-
gy and Petrology, 1987,96:225一244.
[13]Santosh M. Carbonic fluids in granulites:Cause or consequence? Journal of Geological Society of India.1992.39.375-399.
[14]Santosh M , Jackson D H,Harris N B W , et al. Carbonic fluid inclusions in south India granulites: Evidence for entrapment during
charnockite formation. Contributions to Miner- alogy and Petrology, 1991,108:318一330.
[15]Santosh M, Tagawa M, Taguchi S, et al. The Nagcrcoil granulitc block,southern India; pe trology, fluid inclusions and exhumation histo-
ry. Journal of Asian Earth Sciences,2003,22: 131一155.
[16]Santosh M, Tsunogac T. Extremely high densi- ty pure CO2 fluid inclusions in a garnet granulite from southern India.
The Journal of Geology, 2003,111:1一16.
[17]Srikantappa C, Raith M, Touret J I. R. Syn- metaporphic high-density carbonic fluids in the lower crust:evidence from the Nilgiri granu-
lites, southern India. Journal of Petrology, 1992,33:733一760.
[18]Tsunogae T,Santosh M, Dubcssy J. Fluid characteristics of higlrto ultrahiglrtemperature metamorphism in southern India; A quantitative
Raman spectroscopic study. Precambrian Re search,2008,162. 198一21.
[19]Santosh M, Yoshida M. A petrologic and fluid inclusion study of charnockites from the L? tzow-Holm Bay region, East Antarctica; Evi-
deuce for fluid-rich metamorphism in the lower crust. Lithos, 1992,29:107一126.
[20]Tsunogae T,Santosh M,Olanai Y,et al. Ver y high-density carbonic fluid inclusions in sap phirine-bcaring granulitcs from Tonagh island in
the Archcan Napicr complex, cast Antarctica; implications for CO2 infiltration during ultra- higlrtcmpcraturc(T>1100 0C)metamorphism.
Contributions to Mineralogy and Petrology, 2002,143:279一299.
[21]Wang K Y,Xie Y H. Fluid inclusions from the granulites in east Hebei province. Acta Petro logica Sinica, 1991,9(4):57一67.(王凯怡,谢
[22]Shen K,Xu H F, Shen Q H. Metamorphic flu- ids in the Yishui Granulite Complex and their geological significance, Shandong. Journal of
Geology and Mineral Researches of North Chi- na, 1995,10; 154一166.(沈昆,徐惠芬,沈其韩.山东沂水麻粒岩杂岩中的变质流体及其
地质意义.华北地质矿产杂志,1995, 10(2); 154一166).
[23]Shen K,Shen Q H,Xu H F, et al. Metamor- phic fluids related to anatexis in Gongdanshan Block, Yishui County, Shandong Province. Ar
to Petrologica et Mineralogica, 1998,17:193一 205.(沈昆,徐惠芬,沈其韩等.山东省沂水汞月一山地块与深熔作用有关的变质流体.岩石
矿物学杂志,1998, 17(3) : 193-205).
[24]Santosh M.,Tsunogae T,Ohyama H,et al. Carbonic metamorphism at ultrahiglrtempera- tures; Evidence from North China Craton.
E arth and Planetary Science Letters, 2008 266:149一165.
[25]Santosh M, Kusky T.Origin of pared high prcssure-ultrahigh-temperature orogens; A ridge subduction and slab window model.Terra Nova, 2009,22:35一42.
[26]Yin A,Harrison T M. Geologic evolution of the Himalayan-Tibetan orogen. Annual Review of Earth and Planetary Sciences,2000,28: 211~280.
[27]Zhang Z M,Zheng L L,Wang J L, et al. Gar- net pyroxenite in the Namjagbarwa Group-com- plex in the eastern Himalayan tectonic syntaxis,
Tibet,China; Evidence for subduction of the Indian continent beneath the Eurasian plate at  80一100 km depth. Geological Bulletin of Chi-
na, 2007,26; 1~12.(张泽明,郑来林,土金丽等.东喜马拉雅构造结南迎巴瓦群中的石榴辉石岩—印度大陆向欧亚板块
之卜俯冲至80~100 km深度的证据.地质通报,2007,26; 1~ 12).
[28]Zhang Z M, Wang J L,Shen K,et al. Paleozo- ic circum-Gondwana orogens; petrology and ge- ochronology of the Namche Barwa complex in
the eastern Himalayan syntaxis,Tibet. Acta Petrologica Sinica, 2008, 24:1627一1637.(张泽明,土金丽,沈昆等.环东冈瓦纳大陆周缘
[29]Zhang Z M, Wang J L,Zhao G C, et al. Geo- chronology and Precambrian tectonic evolution of the Namche Barwa complex from the eastern
Himalayan syntaxis, Tibet. Acta Petrologica Sinica, 2008, 24; 1477~1487.(张泽明,土金丽,赵国春等.喜马拉雅造山带东构造结南迎
巴瓦岩群地质年代学和前寒武纪构造演化.岩石学报,2008,24: 1477~1487).
[30]Xu Z Q, Cai Z H,Zhang Z M, et al. Tectonics and febric kinematics of the Namche Barwa ter- rane, eastern Himalayan syntaxis. Acta petro-
logicaSinica, 2008, 24; 1463-1476.(许志琴,蔡志慧,张泽明等.喜马拉雅东构造结—南迎巴瓦构造及组构运动学.岩石学报,2008, 24:1463一1476).
[31]Allegre C J,Courtillot V,Tapponnier P,et al. Structure and evolution of the Himalaya一Tibet orogenic belt. Nature,1984,307:17一22.
[32]Geng Q R,Pan G T,Zheng L L, et al. The eastern Himalayan syntaxis:major tectonic do- mains,ophiolitic m? langcs and geologic evolu-
tion. Journal of Asian Earth Sciences, 2006,27:265~285
[33]Liu Y,Zhong D. Petrology of higlrpressure granulites from the eastern Himalayan syntaxis. Journal of Metamorphic Geology, 1997,15: 451~466
[34]Lee J,Hacker B R,Dinklage W S, et al. Evo lution of the Kangmar dome,southern Tibet Structural,petrologic,and thermochronologic
[35]Ding L,Zhong D, Yin A,et al. Cenozoic structural and metamorphic evolution of the eastern Himalayan syntaxis(Namche Barwa).
Earth and Planetary Science Letters, 2001,192:423一438.
[36]Gehrels G E, DeCelles P G, Martin A,et al. Initiation of the Himalayan orogen as an Early Paleozoic thirrskinned thrust belt. GSA Today, 2003,13:4一9.
[37]Dong X, Zhang Z M,Wang J L,et al. Prove- nance and formation age of the Nyingchi Group in the southern Lhasa terrane, Tibetan plateau:
Petrology and zircon U一Pb geochronology. Acta Petrologica Sinica, 2009,25:1678一 1694.(董听,张泽明,土金丽等.青藏高原拉
萨地体南部林芝岩群的物质来源与形成年代: 岩石学与错石U-Pb年代学.岩石学报,2009,25:1678一1694).
[38]Wang J L,Zhang Z M, Dong X, et al. Discov- ery of Late Cretaceous garnet two-pyroxenc granulite in the southern Lhasa terranc,Tibet
and its tectonic significances. Acta Petrologica Sinica, 2009, 25; 1695-1706(土金丽,张泽明,董听等.西藏拉萨地体南部晚白奎纪石榴石
[39]Wang J L, Zhang Z M,Shi C. Anatcxis and dy- namics of the Lhasa terrane in the eastern Hi- malayan syntaxis,Tibet. Acta Petrologica Sini-
ca, 2008, 24; 1539-1551.(土金丽,张泽明,石超.喜马拉雅造山带东构造结拉萨地块多期深熔作用及动力学.岩石学报,2008, 24; 1539- 1551).
[40]Mo X X, Dong G C, Zhao Z D, et al. Spatial and temporal distribution and characteristics of granitoids in the Gangdesc,Tibet and implica-
tion for crustal growth and evolution. Geolog- ical Journal of China University, 2005,11: 281 -290.(莫宣学,董国臣,赵志月一等.西藏
冈底斯带花岗岩的时空分布特征及地壳生长演化信息.高校地质学报,2005, 11 ; 281 -290).
[41]Mo X X, Dons G C,Zhao Z D, et al. Timing of mama mixing in Gangdisc magmatic belt during the India-Asia collision zircon SHIRMP
U一Pb dating. Acta Geologica Sinica, 2005,79:66~76
[42]Chung S L, Chu M F, Zhang Y Q, et al. Ti- betan tectonic evolution inferred from spatial and temporal variations in post collisional mag-
matism. Earth-Science Review, 2005,68: 173一196.
[43]Chu M F, Chung S L,SongH,et al. Zircon U一Pb and Hf isotope constraints on the Meso zoic tectonics and crustal evolution of Southern
Tibet. Geology, 2006,34:745一748.
[44]Wen D R,Chung S L, Song B, et al. Late Cre taceous Gangdese intrusions of adakitic geo- chemical characteristics, SE Tibet:petrogenesis
and tectonic implications. Lithos, 2008,105: 1~11.
[45]Wen D R,Liu D Y,Chung S L,et al. Zircon BHRIMP U一Pb ages of the Gangdese batholith and implications for Ncotcthyan subduction in
southern Tibet. Chemical Geology, 2008,252: 191一201.
[46]Ji W Q, Wu F Y,Chum S L,et al. Zircon U一Pb geochronology and Hf isotopic con straints on petrogenesis of the Gangdese batho
lith, southern Tibet. Chemical Geology, 2009 ,262. 229一245.
[47]Pan G T,Mo X X, Hou Z Q, et al. Spatial temporal framework of the Gangdese orogenic belt and its evolution. Acta Petrologica Sinica,
2006,22(3):521一533.(潘桂棠,莫宣学,侯增谦等.冈底斯造山带的时空结构及演化.岩石学报,2006 22(3): 521一533).
[48]Maluski G, Proust F, Xiao X C. 39Ar/40Ar dating of the trans-Himalayan calcalkaline mag- matism of southern Tibet. Nature, 1982,298: 152一154.
[49]Coulon C, Maluski H,Bollinger C, et al. Mes- ozoic and Cenozoic volcanic rocks from central and southern Tibet:39Ar一40Ar dating, petro-
logical characteristics and gcodynamical signifi- cance. Earth and Planetary Science Letters,1986,79:281一302.
[50]Mo X X, Zhao Z D, Deng J F, et al. Response of volcanism to the India-Asia collision. Earth Science Frontiers 2003,10:135一148.(莫宣
学,赵志月一,邓晋福等.印度一亚洲大陆主碰撞过程的火山作用响应.地学前缘,2003, 10; 135一148).
[51]Zhou S, Mo X X, Dong G C,et al.40Ar一39Ar geochronology of Cenozoic Linzizong volcanic rocks from Linzhou Basin, Tibet,
China, and their geological implications. Chinese Science Bulletin, 2004,49:1970一1979.(周肃,莫宣学,董国臣等.西藏林周盆地林子
宗火山岩40Ar/39Ar年代格架.科学通报,2004,49; 1970一1979).
[52]Mo X X, Hou Z Q, Niu Y L,et al. Mantle contributions to crustal thickening during conti- nental collision; evidence from Cenozoic igneous
rocks in southern Tibet. Lithos, 2007,96: 225一242.
[53]Mo X X,Niu Y L,Dong G C,et al. Contribu- tion of syrrcollisional fclsic magmatism to conti- nental crust growth; A case study of the Paleo-
gene Linzizong volcanic succession in southern Tibet. Chemical Geology, 2008,250:49一67.
[54]Zhang Z M,Zhao G C, Santosh M, et al. Late Cretaceous charnockite with adakitic affinities from the Uangdese batholith,southeasternTi-
bet:Evidence for Neo-tethyan mid-ocean ridge subduction. Gondwana Research, 2010,17 615一631.
[55]Roedder E. Fluid inclusions. Mineralogical So cietv of America Reviews in Mineralogv,1984,12:644p.
[56]Touret J L R. Fluids in metamorphic rocks.Lithos,2001,55:1~26
[57]van den Kerkhof A M,Hein U F. Fluid inclu sion petrography. Lithos, 2001,55:27一47
[58]Pan J Y,Ding J Y,Ni P. Raman micro-spectros- copy study of carbonate ion in synthetic fluid in- clusions in system Na2CO3一H2O3.Journal of
Nanjing University(Natural Sciences),2012,48(3): 328-335.潘君屹,丁俊英,倪培. Na2CO3-H2O体系人工流体包裹体中CO 2-3
离子的显微拉曼光谱研究.南京大学学报(自然科学),2012, 48(3): 328-335).
[59]Bakker R J. Package FLUIDS 1. Computer programs for analysis of fluid inclusion data and for modeling bulk fluid properties. Chemical
Geology, 2003,194:3一23.
[60]Brey G P,Kohler T,1990. Geothermobarome try in four-phase lherzolites II. New thermoba romceters,and practical assessment of existing
thermobarometers. Journal of Petrology 31, 1353一1378.
[61]Taylor W R. An experimental test of some geo- thermometer and geobarometer formulations for upper mantle peridotites with application to the
therbarometry of fertile lherzolites and garnet websterite. Neues Jahrbuch fur Mineralogie Abhandlungen, 1998,172:381一408 .
[62]Jackson D H,Santosh M. Dehydration reaction and isotope front transport induced by CO2 infil- tration at Nuliyam, South India. Journal of
Metamorphic Geology, 1992,10:365一382.
[63]Fyfe W S.The granulite facies,partial melting and the Archean crust. Philosophical Transac dons of the Royal Society, London A,1973,273:457~461
[64]Frost B R,Frost C D. CO2,melts and granulite metamorphism.Nature,1987,327:503~506
[65]Newton R C,Smith J V,Windley B F. Carbon ic metamorphism,granulitcs and crustal growth.Nature,1980,288:45~50.
[66]Newton R C. Charnockitic alteration; evidence for CO2 infiltration in granulite facies metamor- phism. Journal of Metamorphic Geology, 1992,10:383一400.
[67]Jackson D H.,Mattey D P, Harris N B W. Carbon isotope compositions of fluid inclusions in charnockites from southern India.Nature,1988,333:167~170.
[68]Touret J L R. CO2 transfer between the upper mantle and the atmosphere; temporary storage in the lower crust.Terra Nova, 1992,4:87~98.



更新日期/Last Update: 2015-06-16