南京大学学报(自然科学版) ›› 2016, Vol. 52 ›› Issue (4): 619–.

• • 上一篇    下一篇

含对称三角形腔的波导管中宽带低频隔声效应

葛 勇1,孙宏祥1,2*,袁寿其1,夏建平1,管义钧1   

  • 出版日期:2016-07-23 发布日期:2016-07-23
  • 作者简介:1.江苏大学理学院,流体机械工程技术研究中心,镇江,212013;2.中国科学院声学研究所,声场声信息国家重点实验室,北京,100190
  • 基金资助:
    Foundation Item:Major Program of National Natural Science Foundation of China(51239005),National Natural Science Foundation of China(11404147),Jiangsu Provincial Natural Science Foundation(BK20140519),China Postdoctoral Science Foundation(2015M571672),Research Fund for Advanced Talents of Jiangsu University(11JDG118),Training Project of Young Backbone Teachers of Jiangsu University Received Date:2016-05-17 *Corresponding author,E­mail:jsdxshx@ujs.edu.cn

Broadband insulation of low­frequency sound in a waveguide with symmetric triangle cavities

Ge Yong1,Sun Hongxiang1,2*,Yuan Shouqi1,Xia Jianping1,Guan Yijun1   

  • Online:2016-07-23 Published:2016-07-23
  • About author:1.Faculty of Science,Research Center of Fluid Machinery Engineering and Technology,Jiangsu University,Zhenjiang,212013,China; 2.State Key Laboratory of Acoustics,Institute of Acoustics,Chinese Academy of Sciences,Beijing,100190,China

摘要: 研究一种含两个对称三角形腔的波导管中宽频带低频隔声效应.波导管的隔声频带下限与带宽分别可达到140 Hz和2900 Hz,且所调控声波最大波长是三角形腔的尺寸13.6倍.这种隔声效应源于三角形腔截面积与波导管宽度的差异而引起的交界面上的高声反射率.在此基础上,研究波导管的结构参数(如波导管的宽度、三角形腔的底边长度与高度)及不同类型的腔(Helmholtz腔、矩形腔与直角三角形腔)对低频隔声效果的影响.结果表明,三角形腔的截面积和波导管宽度的差异与低频隔声效果密切相关.此外,由于对结构的本征模式的抑制作用,直角三角形腔所对应的低频隔声频带最宽.所提出的结构具有高隔声、宽频带、结构简单易实现等优点,在声学领域具着一定的潜在应用价值.

Abstract: We report a broadband sound insulation effect through a waveguide with two triangle cavities.The lower cutoff frequency and bandwidth of the sound insulation could reach about 140 Hz and 2900 Hz,respectively,and the length of the triangle cavity is about λ/13.6.This phenomenon arises from high acoustic reflectance owing to the difference between the cross­sectional areas of the waveguide and triangle cavities.In addition,we also investigate the influences of the parameters of waveguide,such as the wide of the waveguide,the base and height of both triangle cavities,on the characteristics of the sound insulation.Besides,the sound insulation in the waveguide with other types of cavities(Helmholtz cavities,rectangle cavities,and right triangle cavities)on the sound insulation is also discussed in detail.The results show that the performance of sound insulation is closely related to the difference between the cross­sectional areas of the waveguide and triangle cavities,and the wider bandwidth of the sound insulation is obtained by using the right triangle cavities owing to the inhibition of the eigen modes.The design has the advantages of high sound insulation,broad bandwidth,and simple structure as well as being easy to be achieved.

[1] 陆慧颖,宋刚永,程 强.二维声学超材料透镜的设计与实验.南京大学学报(自然科学),2015,51(6):1115-1119.(Lu H Y,Song G Y,Cheng Q.Design and measurements of a two dimensional metamaterial acoustic lens.Journal of Nanjing University(Natural Sciences),2015,51(6):1115-1119.) [2] 余思远,张 恒,卢明辉.声表面波声子晶体中的能带结构及带隙类型.南京大学学报(自然科学),2015,51(6):1108-1113.(Yu S Y,Zhang H,Lu M H.Surface acoustic band structures and eigen modes in phononic crystals based on surface acoustic waves.Journal of Nanjing University(Natural Sciences),2015,51(6):1108-1113.) [3] 任 悦,刘杰惠,刘晓宙等.基于有限元分析的超声弹性成像仿真研究.南京大学学报(自然科学),2015,51(1):7-13.(Ren Y,Liu J H,Liu X Z,et al.Simulation of ultrasound elastography based on finite element analysis.Journal of Nanjing University(Natural Sciences),2015,51(1):7-13.) [4] Mei J,Ma G,Yang M,et al.Dark acoustic metamaterials as super absorbers for low­frequency sound.Nature Communications,2012,3(2):756. [5] Ma G,Yang M,Xiao S,et al.Acoustic metasurface with hybrid resonances.Nature Materials,2014,13(9):873. [6] Leroy V,Strybulevych A,Lanoy M,et al.Superabsorption of acoustic waves with bubble metascreens.Physical Review B,2015,9(2):1020301. [7] Cai X,Guo Q,Hu G,et al.Ultrathin low­frequency sound absorbing panels based on coplanar spiral tubes or coplanar Helmholtz resonators.Applied Physics Letters,2014,105(12):121901. [8] Cheng Y,Zhou C,Yuan B G,et al.Ultra­sparse metasurface for high reflection of low­frequency sound based on artificial Mie resonances.Nature Materials,2015,14(10):1013. [9] Chocano V M G,Dehesa J S.Anomalous sound absorption in lattices of cylindrical perforated shells.Applied Physics Letters,2015,106(12):124104. [10] Li R Q,Zhu X F,Liang B,et al.A broadband acoustic omnidirectional absorber comprising positive­index materials.Applied Physics Letters,2011,99(19):193507. [11] Climente A,Torrent D,Sánchez­Dehesa J.Omnidirectional broadband acoustic absorber based on metamaterials.Applied Physics Letters,2012,100(14):144103. [12] Wei Q,Cheng Y,and Liu X J.Experimental realization of broadband acoustic omnidirectional absorber by homogeneous anisotropic metamaterials.Applied Physics Letters 2012,100(7):094105. [13] Gu Z M,Liang B,Li Y,et al.Experimental realization of broadband acoustic omnidirectional absorber by homogeneous anisotropic metama­terials.Journal of Applied Physics,2015,117(7):074502. [14] Qian F,Zhao P,Quan L,et al.Broadband acoustic omnidirectional absorber based on temperature gradients.Europhysics Letters,2014,107(3):34009. [15] Song J Z,Bai P,Hang Z H,et al.Acoustic coherent perfect absorbers.New Journal of Physics,2014,16(3):033026. [16] Duan Y,Luo J,Wang G,et al.Theoretical requirements for broadband perfect absorption of acoustic waves by ultra­thin elastic meta­films.Scientific Report,2015,5:12139. [17] Denisn V,Pelat A,Gautier F.Scattering effects induced by imperfections on an acoustic black hole placed at a structural waveguide termination.Journal of Sound Vibration,2016,362:56. [18] 夏建平,刘 宸,孙宏祥等.金属圆柱结构中声聚焦效应的研究.南京大学学报(自然科学),2015,51(6):1132-1138.(Xia J P,Liu C,Sun H X,et al.Study on acoustic focusing effect in metal cylinder structure.Journal of Nanjing University(Natural Sciences),2015,51(6):1132-1138.)
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 邱 浩,王欣然*. 二硫化钼的电子输运与器件[J]. 南京大学学报(自然科学版), 2014, 50(3): 280 .
[2] 王学锋1,2*,徐永兵1,2*,张 荣1,2. 低维磁性耦合体系的新物性及电/光场调控进展[J]. 南京大学学报(自然科学版), 2014, 50(3): 309 .
[3] 骆乾坤*,吴剑锋2,杨运3,钱家忠1. 渗透系数空间变异程度对进化算法优化结果影响评价[J]. 南京大学学报(自然科学版), 2015, 51(1): 60 -66 .
[4] 孙大军1,2, 王永恒1,2*, 勇俊1,2. 实频数据技术在水声换能器宽带匹配中的应用[J]. 南京大学学报(自然科学版), 2015, 51(6): 1182 -1188 .
[5] 杨政予1,王新龙1
. 茅山军号声现象的进一步研究[J]. 南京大学学报(自然科学版), 2015, 51(6): 1097 -1106 .
[6] 张亚平,2,万宇1,2,聂青3,阮晓红1,2*,王子健4. 湖泊水体中氮的生物地球化学过程及其生态学意义[J]. 南京大学学报(自然科学版), 2016, 52(1): 5 -15 .
[7] 李荣富1,2,罗跃辉 ,2,曾洪玉1,2,阮晓红1,2*,刘丛强3*. 稳定同位素技术在环境水体氮的生物地球化学循环研究中的应用[J]. 南京大学学报(自然科学版), 2016, 52(1): 16 -26 .
[8] 李 婷1,张超智1,2*,沈 丹1,袁 阳1. 石墨烯和氧化石墨烯的生物体毒性研究进展[J]. 南京大学学报(自然科学版), 2016, 52(2): 235 .
[9] 涂 臻*,卢 晶 . 散射条件下小尺度扬声器阵列声聚焦算法鲁棒性研究[J]. 南京大学学报(自然科学版), 2016, 52(2): 382 .
[10] 季 阳,单 丹,钱明庆,李 伟,徐 骏*,陈坤基. 镶嵌于非晶碳化硅中的高导电性掺杂纳米晶硅的制备与电学性能研究[J]. 南京大学学报(自然科学版), 2016, 52(5): 780 .