南京大学学报(自然科学版) ›› 2015, Vol. 51 ›› Issue (1): 60–66.

• • 上一篇    下一篇

渗透系数空间变异程度对进化算法优化结果影响评价

骆乾坤*,吴剑锋2,杨运3,钱家忠1   

  • 出版日期:2015-01-04 发布日期:2015-01-04
  • 作者简介:(1.合肥工业大学资源与环境工程学院,安徽省,合肥市,230009 2.南京大学地球科学与工程学院水科学系,江苏省,南京市,210093 3.淮河水利委员会,安徽省,蚌埠市,233001)
  • 基金资助:
    中央高校基本科研业务费专项资金资助(J2014HGBZ0186);国家自然科学基金资助项目(41072175,41372235)

Effect assessment of spatial variation of hydraulic conductivity on optimization result of evolutionary algorithm

Luo Qian-Kun1, Wu Jan-Feng2, Yang Yun3, Qian Jia-Zhong1   

  • Online:2015-01-04 Published:2015-01-04
  • About author:(1. School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, China; 2.Department of Hydrosciences, School of Earth Sciences and Engineering, Nanjing University, Nanjing, 210093, China; 3.Huai River Water Resources Commission, Bengbu 233001, China)

摘要: 噪声遗传算法(Noisy genetic algorithm, NGA)是近年来引入到地下水领域处理参数空间变异性的新方法。本文针对渗透系数空间变异程度对基于NGA策略的进化算法求解效果影响展开研究,探索NGA策略适用范围。研究结果表明:当渗透系数对数方差()小于1.0时,采用NGA取样策略,提高算法计算效率的同时不会影响优化结果可靠性;当增加到2.0甚至3.0, 5.0时,算法优化结果不再具有高可靠性。通过增加NGA最大取样数可以提高算法求解精度,有效降低优化结果的不确定性。但随着最大取样数的增加,优化结果精度和可靠性将不再有明显提高。此时需寻求其他方法,如增加资金投入,获取渗透系数条件点,降低渗透系数场不确定性,从而获得更加准确可靠的优化方案。

Abstract: The noisy genetic algorithm (NGA) is a new approach to manage the spatial variation of parameters in recent years. In this study, in order to explore the application range of NGA strategy, it commenced research to study the performance of NGAstrategy under different spatial variation of hydraulic conductivity. The study results show that the optimization results of NGA strategynot only have high reliability but also have high computational efficiency when little than 1.0. However, when increased to 2.0, or even to 3.0, 5.0, the optimization results of NGA strategyno longer have high reliability. In this case, increasing the maximum sampling number of NGA can improve the accuracy of Pareto optimal solutions and reduce the uncertainty of the optimization results. However, when the maximum sampling number of NGA reach a certain extent, the accuracy and reliability of the optimization results will not significantly increase. To further improve the accuracy of the optimization results, it needs to seek other method to describe the spatial variation of hydraulic conductivity, such as increasing remediation cost to get more hydraulic conductivity condition point to reduce the uncertainty of the hydraulic conductivity. Then, more accurate and reliable optimization strategy can be found

[ 1 ] 吴吉春,陆乐. 地下水模拟不确定性分析. 南京大学学报(自然科学), 2011, 47(3): 227~233.
[ 2 ] 陆乐, 吴吉春. 地下水数值模拟不确定性的贝叶斯分析. 水利学报,2010, 41(3): 264~271.
[ 3 ] Wu J F,Zheng C M, Chien C C. Cost-effective sampling network design for contaminant plume monitoring under general hydrogeological conditions. Contaminant Hydrology, 2005, 77: 41~65.
[ 4 ] Wu J F, Zheng C M, Chien C C, et al. A comparative study of Monte Carlo simple genetic algorithm and noisy genetic algorithm for cost-effective sampling network design under uncertainty. Advances in Water Resource, 2006, 29: 899~911.
[ 5 ] 骆乾坤,吴剑锋,林锦等. 地下水污染监测网多目标优化设计模型及进化求解. 水文地质工程地质, 2013, 40(5): 97~103.
[ 6 ] Singh A, Minsker BS. Uncertainty-based multi-objective optimization of groundwater remediation design. Water Resources Research, 2008, 44: 2404~2424.
[ 7 ] 杨蕴,吴剑锋,于军,等. 基于参数不确定性的地下水污染治理多目标管理模型. 环境科学学报,2013,33(7): 2059~2067.
[ 8 ] 彭伟,吴剑锋,吴吉春. NPGA-GW 在地下水系统多目标优化管理中的应用.高校地质学报,2008,14(4): 631~636.
[ 9 ] Luo Q K, Wu J F, Sun X M, et al. Optimal design of groundwater remediation system using a multi-objective fast harmony search algorithm.Hydrogeology Journal, 2012, 20 (8), 1497~1510.
[ 10 ] Meyer P D,Eheart J W, Ranjithan S, et al. Design of Groundwater monitoring networks for landfills. In:Kundzewicz ZW eds Proceedings of the International Workshop on New Uncertainty Concepts in Hydrology and Water resources. Cambridge University Press, 1995, 190~196.
[ 11 ] 阎婷婷, 吴剑锋. 渗透系数的空间变异性对污染物运移的影响研究.水科学进展, 2006, 17(1): 29~36.
[ 12 ] 陈彦, 吴吉春. 含水层渗透系数空间变异性对地下水数值模拟的影响. 水科学进展,2005, 16(4): 482~487.
[ 13 ] Ahmed S,Marsily G D. Comparison of geostatistical methods for estimating transmissivity using data in transmissivity and specific capacity. Water Resources Research, 1987, 23 (9):1717~1737.
[ 14 ] Hassan A E, Cushman J H,Delleur J W. A Monte Carlo assessment flow and transport perturbation models. Water Resources Research, 1998, 34 (5):1143~1163.
[ 15 ] Miller BL. Noise, sampling, and efficient genetic algorithms. PhD.dissertation.Urbana-Champaign: University of Illinois, 1997.
[ 16 ] Smalley JB, Minsker B, Goldberg DE. Risk-based in situ-bioremediation design using a noisy genetic algorithm. Water Resources Research, 2000, 36(10):3043~3052.
[ 17 ] Gopalakrishnan G, Minsker B S, Goldberg D E. Optimal sampling in a noisy genetic algorithm for risk-based remediation design. Journal of Hydroinformatics, 2003, 128, 11~25.
[ 18 ] Freeze R A. A stochastic conceptual analysis of One-dimensional groundwater flow in non-uniform homogeneous media. Water Resources Research,1975,11 (5): 725~741.
[ 19 ] Gelhar L W. Stochastic subsurface hydrology from theory to applications. Water Resources Research, 1986, 22 (9): 135s~145s.
[ 20 ] Koltermann C E,Gorelick S M. Heterogeneity in sedimentary deposits: A review of structure imitating, process imitating, and descriptive approaches. Water Resources Research, 1996,32(9): 2617~2658.
[ 21 ] RobinML, GutjahrA L,Sudicky E A, et al. Crosscorrelated random field generation with the direct Fourier transform method.Water Resources Research, 1993, 29 (7):2385~2397.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 邱 浩,王欣然*. 二硫化钼的电子输运与器件[J]. 南京大学学报(自然科学版), 2014, 50(3): 280 .
[2] 王学锋1,2*,徐永兵1,2*,张 荣1,2. 低维磁性耦合体系的新物性及电/光场调控进展[J]. 南京大学学报(自然科学版), 2014, 50(3): 309 .
[3] 孙大军1,2, 王永恒1,2*, 勇俊1,2. 实频数据技术在水声换能器宽带匹配中的应用[J]. 南京大学学报(自然科学版), 2015, 51(6): 1182 -1188 .
[4] 杨政予1,王新龙1
. 茅山军号声现象的进一步研究[J]. 南京大学学报(自然科学版), 2015, 51(6): 1097 -1106 .
[5] 张亚平,2,万宇1,2,聂青3,阮晓红1,2*,王子健4. 湖泊水体中氮的生物地球化学过程及其生态学意义[J]. 南京大学学报(自然科学版), 2016, 52(1): 5 -15 .
[6] 李荣富1,2,罗跃辉 ,2,曾洪玉1,2,阮晓红1,2*,刘丛强3*. 稳定同位素技术在环境水体氮的生物地球化学循环研究中的应用[J]. 南京大学学报(自然科学版), 2016, 52(1): 16 -26 .
[7] 李 婷1,张超智1,2*,沈 丹1,袁 阳1. 石墨烯和氧化石墨烯的生物体毒性研究进展[J]. 南京大学学报(自然科学版), 2016, 52(2): 235 .
[8] 涂 臻*,卢 晶 . 散射条件下小尺度扬声器阵列声聚焦算法鲁棒性研究[J]. 南京大学学报(自然科学版), 2016, 52(2): 382 .
[9] 葛 勇1,孙宏祥1,2*,袁寿其1,夏建平1,管义钧1 . 含对称三角形腔的波导管中宽带低频隔声效应[J]. 南京大学学报(自然科学版), 2016, 52(4): 619 .
[10] 季 阳,单 丹,钱明庆,李 伟,徐 骏*,陈坤基. 镶嵌于非晶碳化硅中的高导电性掺杂纳米晶硅的制备与电学性能研究[J]. 南京大学学报(自然科学版), 2016, 52(5): 780 .